We address the problem of decoding joint photographic experts group (JPEG)-encoded images with less visual artifacts. We view the decoding task as an ill-posed inverse problem and find a regularized solution using a convex, graph Laplacian-regularized model. Since the resulting problem is non-smooth and entails non-local regularization, we use fast high-dimensional Gaussian filtering techniques with the proximal gradient descent method to solve our convex problem efficiently. Our patch-based "coefficient graph" is better suited than the traditional pixel-based ones for regularizing smooth non-stationary signals such as natural images and relates directly to classic non-local means de-noising of images. We also extend our graph along the temporal dimension to handle the decoding of M-JPEG-encoded video. Despite the minimalistic nature of our convex problem, it produces decoded images with similar quality to other more complex, state-of-the-art methods while being up to five times faster. We also expound on the relationship between our method and the classic ANCE method, reinterpreting ANCE from a graph-based regularization perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.