OBJECTIVE:To test the hypothesis that either uncoupling protein-2 UCP2 or UCP3 or both together influence obesity and inflammation in transgenic mice. DESIGN: We generated 12 lines of transgenic mice for both human UCP2 and 3 using native promoters from a human bacterial artificial chromosome (BAC) clone. The BAC expresses no genes other than UCP2 and 3. Mice used for experiments are N4 or higher of backcross to C57BL/6J (B6). Each experiment used transgenic mice and their nontransgenic littermates. RESULTS: Northern blots confirmed expression on human UCP2 in adipose and spleen, while human UCP3 expression was detectable in gastrocnemius muscle. Western blots demonstrated a four-fold increase of UCP2 protein in spleens of Line 32 transgenic animals. Heterozygous mice of four lines showing expression of human UCP2 in spleen were examined for obesity phenotypes. There were no significant differences between Lines 1 and 32, but female transgenics of both lines had significantly smaller femoral fat depots than the control (littermate) mice (P ¼ 0.015 and 0.005, respectively). In addition, total fat of transgenic females was significantly less in Line 1 (P ¼ 0.05) and almost significantly different in Line 32 (P ¼ 0.06). Male Line 1 mice were leaner (P ¼ 0.04) while male Line 32 mice were almost significantly leaner (P ¼ 0.06). Heterozygous mice of Lines 35 and 44 showed no significant differences from the nontransgenic littermate controls. Effects of the UCP2/UCP3 transgene on obesity in Line 32 mice were confirmed by crossing transgenic mice with the B6.Cg-Ay agouti obese mice. B6.Cg-Ay carrying the UCP2/UCP3 transgene from Line 32 were significantly leaner than nontransgenic B6.Cg-Ay mice. Line 32 UCP2/UCP3 transgenics showed increased hypothalamic Neuropeptide (NPY) levels and food intake, with reduced spontaneous physical activity. Transgenic baseline interleukin4 (IL-4) and interleukin6 (IL-6) levels were low with lower or later increases after endotoxin injection compared to wild-type littermates. Endotoxin-induced fever was also diminished in transgenic male animals. Low-density lipoprotein (LDL) cholesterol levels were significantly higher in both Line 1 and 32 transgenics (P ¼ 0.05 and 0.001, respectively) after they had been placed on a moderate fat-defined diet containing 32% of calories from fat for 5 weeks. CONCLUSION: Moderate overexpression of UCP2 and 3 reduced fat mass and increased LDL cholesterol in two independent lines of transgenic mice. Thus, the reduced fat mass cannot be due to insertional mutagenesis since virtually identical fat pad weights and masses were observed with the two independent lines. Line 32 mice also have altered inflammation and mitochondrial function. We conclude that UCP2 and/or 3 have small but significant effects on obesity in mice, and that their mechanism of action may include alterations of metabolic rate.
Altered ambient force environments affect energy expenditure via changes in thermoregulation, metabolism, and body composition. Uncoupling proteins (UCPs) have been implicated as potential enhancers of energy expenditure and may participate in some of the adaptations to a hyperdynamic environment. To test this hypothesis, this study examined the homeostatic and circadian profiles of body temperature (T(b)) and activity and adiposity in wild-type and UCP2/3 transgenic mice exposed to 1 and 2 G. There were no significant differences between the groups in the means, amplitudes, or phases of T(b) and activity rhythms at either the 1- or 2-G level. Percent body fat was significantly lower in transgenic (5.2 +/- 0. 2%) relative to the wild-type mice (6.2 +/- 0.1%) after 2-G exposure; mass-adjusted mesenteric and epididymal fat pads in transgenic mice were also significantly lower (P < 0.05). The data suggest that 1) the actions of two UCPs (UCP2 and UCP3) do not contribute to an altered energy balance at 2 G, although 2) UCP2 and UCP3 do contribute to the utilization of lipids as a fuel substrate at 2 G.
We have previously reported suggestive evidence for a locus on Chromosome (Chr) 7 that affects adiposity in F2 mice from a CAST/Ei x C57BL/6J intercross fed a high-fat diet. Here we characterize the effect of a high-fat (32.6 Kcal% fat) diet on male and female congenic mice with a C57BL/6J background and a CAST/Ei-derived segment on Chr 7. Adiposity index (AI) and weights of certain fat pads were approximately 50% lower in both male and female congenic mice than in control C57BL/6J mice, and carcass fat content was significantly reduced. The reduction of fat depot weights was not seen, however, in congenic animals fed a low-fat chow diet (12 Kcal% fat). The congenic segment is approximately 25 cM in length, extending from D7Mit213 to D7Mit41, and includes the tub, Ucp2 and Ucp3, genes, all of which are candidate genes for this effect. Some polymorphisms have been found on comparing c-DNA sequences of the Ucp2 gene from C57BL/6J and CAST/Ei mice. These results suggest that one or more genes present in the congenic segment modulate the susceptibility to fat deposition on feeding a high-fat diet. We were unable to show any significant difference between the energy intakes of the congenic and the control C57BL/6J mice on the high-fat diet. Also, measurements of energy expenditure in male mice at 6 weeks of age, during the first 2 weeks of exposure to the high-fat diet, failed to show any differences between control and congenic animals.
We determined the effects of epidermal growth factor (EGF) and beta-methasone on the growth and development of the adrenal gland of the fetal rhesus monkey in vivo between 121-128 days of gestation. The adrenal to body weight ratio was significantly greater (P < 0.05) in EGF-treated fetuses (0.988 +/- 0.046 x 10(-3) g/g) and significantly reduced (P < 0.05) in beta-methasone-treated fetuses (0.401 +/- 0.056 x 10(-3) g/g) compared with that in control fetuses (0.689 +/- 0.050 x 10(-3) g/g). The increase in adrenal weight with EGF administration was due to hypertrophy of definitive zone cells of the adrenal cortex, whereas the reduction in adrenal weight after beta-methasone treatment was due to a decrease in the size of definitive and fetal zone cells of the adrenal cortex. By Western analysis, EGF treatment induced a significant (P < 0.05) 2.8-fold increase in the amount of protein for 3 beta-hydroxysteroid dehydrogenase/isomerase (3 beta HSD) in the fetal adrenal. EGF also stimulated the induction of immunocytochemical staining for 3 beta HSD in transitional zone cells of the adrenal cortex. In contrast, beta-methasone resulted in 2.6-, 4.5-, and 6.6-fold significant decreases (P < 0.05) in the amount of protein for cytochrome P450 cholesterol side-chain cleavage, cytochrome P450 17 alpha-hydroxylase/17,20-lyase, and 3 beta HSD in the fetal adrenal. After beta-methasone treatment. 3 beta HSD staining was detected in some of the definitive zone cells, with no 3 beta HSD staining in the transitional zone. In conclusion, growth and functional differentiation of fetal primate adrenal gland can be accelerated prematurely by EGF and inhibited by glucocorticoid negative feedback.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.