Hydrogen-bonded liquid crystalline polymers have emerged as promising “smart” supramolecular functional materials with stimuli-responsive, self-healing, and recyclable properties. The hydrogen bonds can either be used as chemically responsive (i.e., pH-responsive) or as dynamic structural (i.e., temperature-responsive) moieties. Responsiveness can be manifested as changes in shape, color, or porosity and as selective binding. The liquid crystalline self-organization gives the materials their unique responsive nanostructures. Typically, the materials used for actuators or optical materials are constructed using linear calamitic (rod-shaped) hydrogen-bonded complexes, while nanoporous materials are constructed from either calamitic or discotic (disk-shaped) complexes. The dynamic structural character of the hydrogen bond moieties can be used to construct self-healing and recyclable supramolecular materials. In this review, recent findings are summarized, and potential future applications are discussed.
Soft actuators allowing multifunctional, multishape deformations based on single polymer films or bilayers remain challenging to produce. In this contribution, direct ink writing is used for generating patterned actuators, which are in between single- and bilayer films, with multifunctionality and a plurality of possible shape changes in a single object. The key is to use the controlled deposition of a light-responsive liquid crystal ink with direct ink writing to partially cover a foil at strategic locations. We found patterned films with 40% coverage of the passive substrate by an active material outperformed “standard” fully covered bilayers. By patterning the film as two stripes, a range of motions, including left- and right-handed twisting and bending in orthogonal directions, could be controllably induced in the same actuator. The partial coverage also left space for applying liquid crystal inks with other functionalities, exemplified by fabricating a light-responsive green reflective actuator whose reflection can be switched “on” and “off”. The results presented here serve as a toolbox for the design and fabrication of patterned actuators with dramatically expanded shape deformation and functionality capabilities.
The application of reprocessable and reprogrammable soft actuators is limited by the synthetic strategies,3 Dshaping capabilities,a nd small deformations.I nt his work, melt-processable supramolecular soft actuators based on segmented copolymers containing thiourethane and liquid crystal segments have been prepared via sequential thiol addition reactions in ao ne-pot approach using commercially available building blocks.T he actuators demonstrated immediate,r eversible response and weightlifting capabilities with large deformations up to 32 %. Through exploiting the supramolecular cross-links,t he material could be recycled and reprogrammed into 3D actuators and welded into an actuator assembly with different deformation modes.Our work offers ao ne-pot synthesis and straightforwardm elt-processable approach to prepare supramolecular soft actuators with large deformations that can be reprocessed and reprogrammed into arbitrary 3D shapes.
published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User
Recent years have seen major advances in the additive manufacturing of stimuli‐responsive materials, also known as “4D printing,” among which liquid crystal elastomers (LCEs) play an important role. However, during fabrication photo‐crosslinking of the LCEs is required, but this step is time‐consuming and efficient polymerization is challenging, especially in the case of light‐responsive materials. In this work, the first light‐fueled supramolecular LCEs suitable for the direct ink writing (DIW) of soft actuators are synthesized in which a photopolymerization step is not needed. With the responsive supramolecular material, 3D‐printed objects are fabricated by exploiting the thermoreversible interplay of the hydrogen‐bonding physical cross‐links. After printing, the supramolecular LCE shows reversible shape changes in response to light and is capable of bending and lifting a load. Through the combined photothermal and photochemical contributions of the incorporated azobenzene, the actuators can be triggered both in air and water. The freedom provided by DIW allows for the printing of complex responsive objects, as demonstrated by fabricating re‐entrant honeycomb and spiral director structures. This approach of printing light‐responsive supramolecular soft actuators opens avenues toward the application of “smart” and sustainable materials for additive manufacturing without the requirement of photo‐crosslinking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.