Accumulating epidemiological evidence suggests that anthocyanin intake is associated with reduced risks of cardiometabolic disorders, highlighting the importance of incorporating the phytochemical in our diets. Numerous food-based intervention studies have examined, in controlled meal settings, the role of anthocyanin on cardiometabolic health; but their effects have not been systematically summarized. This study aims to systematically review and summarize the effects of anthocyanin consumption with composite meals on cardiometabolic health from randomized controlled feeding trials. A systematic literature search for relevant human nutritional intervention studies was performed using PubMed, Embase, Cochrane Library, CINAHL Plus with Full Text, and Scopus databases. The Cochrane Risk of Bias tool was used to assess the study quality. Eighteen articles involving 371 participants were included in this review. Consistent improvements from anthocyanin intake were found in glycemic, gastric inhibitory peptide (GIP), interleukin-6 (IL-6), and oxygen radical absorbance capacity (ORAC) responses. Anthocyanin intake did not significantly affect other markers of energy metabolism, vascular functions, oxidative stress and antioxidant status, as well as inflammatory responses. Inconsistencies in successful outcomes between epidemiological studies and included interventions were largely attributed to matrix effects, which may impede the bioaccessibility of anthocyanins and consequently, limiting its health benefits when co-delivered with some foods.
Anthocyanins reduce starch digestibility via carbohydrase-inhibitory pathways, but food matrix effects during digestion may also influence its enzymatic function. Understanding anthocyanin-food matrix interactions is significant as the efficiency of carbohydrase inhibition relies on anthocyanin accessibility during digestion. Therefore, we aimed to evaluate the influence of food matrices on black rice anthocyanin accessibility in relation to starch digestibility in common settings of anthocyanin consumption—its co-ingestion with food, and consumption of fortified food. Our findings indicate that black rice anthocyanin extracts (BRAE) had reduced intestinal digestibility of bread to a larger extent for the co-digestion of BRAE with bread (39.3%) (4CO), than BRAE-fortified bread (25.9%) (4FO). Overall anthocyanin accessibility was about 5% greater from the co-digestion with bread than fortified bread across all digestion phases. Differences in anthocyanin accessibility were also noted with changes to gastrointestinal pH and food matrix compositions—with up to 10.1% (oral to gastric) and 73.4% (gastric to intestinal) reductions in accessibility with pH changes, and 3.4% greater accessibility in protein matrices than starch matrices. Our findings demonstrate that the modulation of starch digestibility by anthocyanin is a combined result of its accessibility, food matrix composition, and gastrointestinal conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.