Alfalfa (Medicago sativa L.) is a highly attractive plant host to Lygus spp. and is used as a trap crop in California organic strawberries to influence the dispersion and dispersal of these pests, particularly Lygus hesperus Knight. The abundance and distribution of Lygus spp. nymphs between two trap crops separated by 50 strawberry rows was analyzed in 2008 and 2010. Nymphs demonstrated a bimodal distribution in strawberries between trap crops, where nymphs were most abundant and aggregated in alfalfa, when compared with interior strawberry rows, where nymphs were less abundant. The majority of nymphs were concentrated in trap crops and nymphal densities in interior strawberry rows were well below economic thresholds. The movement of Lygus spp. from a marked alfalfa trap crop into adjacent strawberry rows or trap crops was also studied in 2008 and 2009 using a chicken egg albumin enzyme-linked immunosorbent assay mark-capture technique. The majority of marked-captured L. hesperus adults and Lygus spp. nymphs remained in alfalfa trap crops, rather than dispersing out into strawberry rows at 24 h, 48 h, and 2 wk, postprotein application. The attenuation of Lygus spp. movement in alfalfa associated with organic strawberries is a key component of successful trap cropping. A small percentage of marked adults and nymphs were captured in neighboring alfalfa trap crops, located 62 m from the point of protein application, highlighting the dispersal capacity of this key pest.
A key economic pest of strawberries in California is the western tarnished plant bug, Lygus hesperus Knight (Hemiptera:Miridae). Alfalfa (Medicago sativa L.) is a highly attractive plant host to western tarnished plant bug, and we hypothesized that it can be successfully managed as a trap crop for pest suppression in strawberries. Completely randomized design trap cropping experiments were established on an organic strawberry farm from 2002 to 2004. Western tarnished plant bug adults and nymphs were significantly more abundant in alfalfa trap crops than in comparable edge strawberry rows. Over 3 experimental yr, twice-weekly summer vacuuming of alfalfa trap crops with a tractor-mounted vacuuming device reduced adult and nymph abundance by 72 and 90%, respectively, in trap crops. This summer vacuuming of alfalfa trap crops also significantly reduced damage caused by western tarnished plant bug in associated unvacuumed organic strawberries (June and July 2002, June 2003, and June and July 2004) compared with either an untreated control (2003) or the organic strawberry grower's standard whole field vacuuming treatment. Vacuuming of alfalfa trap crops reduces an organic grower's costs (tractor, tractor fuel, and driver time) by 78% compared with current whole field vacuuming practices. An economic analysis of a whole hectare model indicates that a positive return from the use of vacuumed trap crops could be realized in 2004. The overall potential positive net return for the 3 mo of vacuumed alfalfa trap crop treatments in 2004 was calculated at +$1,829/ha.
1998). Comparison of conventional and organic apple production systems during three years of conversion to organic management in coastal California.Abstract. Conventional and organic semidwarf Granny Smith apple production systems were compared during three years of conversion to certified organic management. Because of differences in fruit load with hand thinning compared with chemical thinning, apple tonnage was higher in the organic production system (OPS) in 1989 and 1991. The organic system was higher than the conventional system in number and weight of fruit per tree, but smaller in average fruit size. Using grower-receivedfarmgate premiums of 38% (1990) and 33% (1991) for unsorted, certified organic apples, comparative cost accounting showed greater net return per hectare for the OPS. The OPS required higher material and labor inputs in all years.Greater terminal growth in the conventional production system (CPS) in 1991 was the only significant difference in growth indicators between systems. N was generally higher in leaf and new wood bark tissues in the CPS. P was generally higher in the leaf and new wood bark tissues in the OPS. No decline in yield was associated with increased weed biomass in the OPS. There was no difference in fruit damage caused by codling moth between production system treatments (codling moth granulosis virus and pheromone-based mating disruption vs. synthetic insecticide). In 1991, secondary lepidopterous pests (apple leafroller and orange tortrix) caused greater fruit scarring in the CPS. In all years, tentiform leafminers caused greater leaf damage in the CPS. Apple leafhopper density and leaf damage were greater in the OPS in 1990 and Soil nutrient levels showed few significant changes during conversion to organic management. Soil bulk density and water holding capacity were useful indicators of changes in soil physical characteristics. Potentially mineralizable nitrogen andmicrobial biomass-C were more sensitive indicators of system change than total N or organic C. Two soil biological ratios, the respiratory ratio and biomass-C/total organic-C, were similar in the two production systems. Earthworm biomass and abundance increased in the OPS in the third year. The introduction of Lumbricus terrestris into the OPS greatly increased litter incorporation rates.
Alfalfa trap crops are currently used to manage Lygus spp. in organic strawberry fields on the California Central Coast. The retention of Lygus spp. in alfalfa creates aggregated distributions that provide improved opportunities for biological control by the introduced parasitoid Peristenus relictus (Ruthe). The abundance and distribution of P. relictus between two trap crops separated by 50 strawberry rows were analyzed in 2008 and 2010. Parasitism of Lygus spp. nymphs by P. relictus (measured by larval abundance and % parasitism) was greatest in alfalfa trap crops compared with strawberry rows. A significantly positive correlation between host nymphs and P. relictus larvae in and between trap crops was found. Movement of P. relictus adults from a marked alfalfa trap crop into adjacent strawberry rows or trap crops was also studied in 2008 and 2009 using a chicken egg-albumin enzyme-linked immunosorbent assay mark-capture technique. In 2008 and 2009, 85 and 49% of protein-marked wasps were captured from central trap crops, respectively, indicating that alfalfa trap crops act as a concentrated "host-density anchor" in organic strawberry fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.