Adenosine receptor A3 (A3) knockout results in progressive loss of articular cartilage in vivo. Ablation of A3 results in activation of matrix degradation and cartilage hypertrophy. A3 agonists downregulate RUNX2 and CaMKII expression in osteoarthritic human articular chondrocytes. A3 prevents articular cartilage matrix degradation induced by inflammation and osmotic fluctuations. A3 agonist inhibits proteolytic activity of cartilage-degrading enzymes.
Current study demonstrates a direct role for CaMKII in TGF-β and BMP-mediated responses in primary and PSC-derived chondrocytes. These findings have direct implications for tissue engineering of cartilage tissue from stem cells and therapeutic management of OA.
This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as
CD4 þ cells can be sources of anti-inflammatory cytokines such as IL-4 and IL-10, as well as inhibiting the release of pro-inflammatory cytokines such as IL-1b or TNF-a. These findings support the notion that phenomena unrelated to long-term survival and engraftment of injected cells may have clear immunoregulatory effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.