The abundance of heterotrophic bacteria and viruses, as well as rates of viral production and virus-mediated mortality, were measured in Discovery Passage and the Strait of Georgia (British Columbia, Canada) along a gradient of tidal mixing ranging from well mixed to stratified. The abundances of bacteria and viruses were approximately 10(6) and 10(7) mL(-1), respectively, independent of mixing regime. Viral production estimates, monitored by a dilution technique, demonstrated that new viruses were produced at rates of 10(6) and 10(7) mL(-1)h(-1) across the different mixing regimes. Using an estimated burst size of 50 viruses per lytic event, ca. 19 to 27% of the standing stock of bacteria at the stratified stations and 46 to 137% at the deep-mixed stations were removed by viruses. The results suggest that mixing of stratified waters during tidal exchange enhances virus-mediated bacterial lysis. Consequently, viral lysis recycled a greater proportion of the organic carbon required for bacterial growth under non-steady-state compared to steady-state conditions.
1. Samples from 16 lakes in central (n = 145) and western (n = 12) North America, the coastal northeast Pacific (n = 302) and the western Canadian Arctic Oceans (n = 142) were collected and analysed for viral, bacterial and cyanobacterial abundances and chlorophyll-a concentration.2. Viral abundance was significantly different among the environments. It was highest in the coastal Pacific Ocean and lowest in the coastal Arctic Ocean. The abundances of bacteria and cyanobacteria as well as chlorophyll-a concentrations also differed significantly among the environments, with both bacterial abundance and chlorophyll-a concentration highest in lakes. As a consequence, the association of these variables with viral abundance varied among the environments. 3. Discriminant analyses with the abundance data indicated that the marine and freshwater environments were predictably different from each other. Multiple-regression analysis included bacterial and cyanobacterial abundances, and chlorophyll-a concentration as significant variables in explaining viral abundance in lakes. In regression models for the coastal Pacific Ocean, bacterial and cyanobacterial abundances were significant variables, and for the coastal Arctic Ocean viral abundance was predicted by bacterial abundance and chlorophyll-a concentration. 4. The relationship of viral and bacterial abundance differed between the investigated freshwater and marine environments, probably because of differences in viral production and loss rates. However, freshwaters had fewer viruses compared to bacteria, despite previously documented higher burst sizes and frequencies of infected cells, suggesting that loss rates may be more important in lakes. 5. Together, these findings suggest that there are different drivers of viral abundance in different aquatic environments, including lakes and oceans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.