The aim of this study of serpentovirus infection in captive snakes was to assess the susceptibility of different types of snakes to infection and disease, to survey viral genetic diversity, and to evaluate management practices that may limit infection and disease. Antemortem oral swabs were collected from 639 snakes from 12 US collections, including 62 species, 28 genera, and 6 families: Pythonidae (N = 414 snakes; pythons were overrepresented in the sample population), Boidae (79), Colubridae (116), Lamprophiidae (4), Elapidae (12), and Viperidae (14). Infection was more common in pythons (38%; 95% CI: 33.1–42.4%), and in boas (10%; 95% CI: 5.2–18.7%) than in colubrids (0.9%, 95% CI: <0.01–4.7%); infection was not detected in other snake families (lamprophiids 0/4, 95% CI: 0–49%; elapids 0/12, 95% CI: 0–24.2%; and vipers 0/14, 95% CI: 0–21.5%), but more of these snakes need to be tested to confirm these findings. Clinical signs of respiratory disease were common in infected pythons (85 of 144). Respiratory signs were only observed in 1 of 8 infected boas and were absent in the single infected colubrid. Divergent serpentoviruses were detected in pythons, boas, and colubrids, suggesting that different serpentoviruses might vary in their ability to infect snakes of different families. Older snakes were more likely to be infected than younger snakes (p-value < 0.001) but males and females were equally likely to be infected (female prevalence: 23.4%, 95% CI 18.7–28.9%; male prevalence: 23.5%, 95% CI 18–30.1%; p-value = 0.144). Neither age (p-value = 0.32) nor sex (p-value = 0.06) was statistically associated with disease severity. Longitudinal sampling of pythons in a single collection over 28 months revealed serpentovirus infection is persistent, and viral clearance was not observed. In this collection, infection was associated with significantly increased rates of mortality (p-value = 0.001) with death of 75% of infected pythons and no uninfected pythons over this period. Offspring of infected parents were followed: vertical transmission either does not occur or occurs with a much lower efficiency than horizontal transmission. Overall, these findings confirm that serpentoviruses pose a significant threat to the health of captive python populations and can cause infection in boa and colubrid species.
Background
Reliable biomarkers for monitoring disease progression and management in dogs with acute pancreatitis have not been described.
Objective
To determine if serum concentrations of canine pancreatic lipase immunoreactivity (cPLI) and C‐reactive protein (CRP) can be used as biomarkers for disease progression in hospitalized dogs with acute pancreatitis.
Animals
Thirteen hospitalized dogs with acute pancreatitis diagnosed based on clinical signs, serum cPLI concentrations, and imaging findings were enrolled.
Methods
Serum cPLI and CRP concentrations were determined before and then daily during hospital management and 1 week after hospital discharge. Modified canine activity index (MCAI) and canine acute pancreatitis clinical severity index (CAPCSI) scores were calculated daily for each patient while hospitalized.
Results
The MCAI scores (P = .03) but not CAPCSI scores (P = .31) were significantly different between dogs that survived to discharge (n = 11) and those that did not (n = 2). Serum cPLI concentration was positively correlated with MCAI (rho = 0.42; P = .01). Serum CRP concentration also was positively correlated with the MCAI (rho = 0.42, P = .01).
Conclusions
Serum cPLI and possibly CRP could be used as objective biomarkers for clinical changes in hospitalized dogs with acute pancreatitis. Additional studies involving larger numbers of dogs would be warranted to evaluate the broader impact of these findings.
Biodiversity loss is the greatest environmental problem threatening ecosystem, animal, and human health. Anthropogenic induced changes to climate, habitat, disease, species distributions, poaching, and unsustainable trade have accelerated extinction rates in all vertebrates, including reptiles. Preventing reptile extinctions will require humans to acknowledge these losses and develop ex situ and in situ plans to preserve them. Assisted reproductive technologies (ART) are management tools used to protect numerous vertebrate taxa; however, progress in developing ART for reptiles has lagged. Creating functional and sustainable reptile ART will strengthen our conservation capacity by capturing genetic material from select individuals to overcome natural or manmade boundaries. Utilising short-term gamete storage and genome resource banking, in conjunction with timed artificial insemination (AI) or ex ovo incubation, could lead to profound advances in reptile conservation, mitigating the loss of reptile biodiversity. In this article, we review ART reptile research completed since the 1970s. Topics include AI, hormonal control of reproduction, gamete collection, gamete storage, and genome resource banking. Additionally, we review the potential application of advanced reproductive methodologies, including in vitro/ex ovo fertilisation, intracytoplasmic sperm injection, cloning (somatic cell nuclear transfer), and genetic editing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.