In this study, we assessed mercury (Hg) exposure in several tissues (brain, liver, and breast and primary feathers) in bald eagles (Haliaeetus leucocephalus) collected from across five Great Lakes states (Iowa, Michigan, Minnesota, Ohio, and Wisconsin) between 2002-2010, and assessed relationships between brain Hg and neurochemical receptors (NMDA and GABA(A)) and enzymes (glutamine synthetase (GS) and glutamic acid decarboxylase (GAD)). Brain total Hg (THg) levels (dry weight basis) averaged 2.80 μg/g (range: 0.2-34.01), and levels were highest in Michigan birds. THg levels in liver (r(p) = 0.805) and breast feathers (r(p) = 0.611) significantly correlated with those in brain. Brain Hg was not associated with binding to the GABA(A) receptor. Brain THg and inorganic Hg (IHg) were significantly positively correlated with GS activity (THg r(p) = 0.190; IHg r(p) = 0.188) and negatively correlated with NMDA receptor levels (THg r(p) = -0245; IHg r(p) = -0.282), and IHg was negatively correlated with GAD activity (r(s) = -0.196). We also report upon Hg demethylation and relationships between Hg and Se in brain and liver. These results suggest that bald eagles in the Great Lakes region are exposed to Hg at levels capable of causing subclinical neurological damage, and that when tissue burdens are related to proposed avian thresholds approximately 14-27% of eagles studied here may be at risk.
The Wisconsin Department of Natural Resources (WDNR) collected trapper-caught river otter (Lutra canadensis) from 3 distinct areas of Wisconsin (north, central, and south). Otter carcasses were collected from a total of 12 counties during the trapping seasons of 2003 and 2004. Liver, kidney, muscle, brain, and fur tissue was collected for mercury (Hg) analysis. Analysis of variance identified collection zone as the significant factor for differences in tissue Hg levels, with a pattern of decreasing Hg concentrations from north to south (p < 0.0001). This trend was apparent in all tissue types analyzed. Strong relationships were observed between Hg concentrations in all tissues. Likewise, highly significant (p < 0.0001) relationships were found to exist between Hg concentrations in otter fur and Hg concentrations of internal organs (brain, muscle, kidney, and liver). Although these data suggest that Hg concentrations are related among tissues, they do not suggest uniform distribution of Hg throughout the tissues. The results suggest that Hg accumulates at higher concentrations in fur followed by liver, kidney, muscle, and brain. Analysis of a subset of samples for methylmercury (MeHg) revealed that MeHg made up a greater percentage of total Hg in brain and muscle compared to liver and kidney tissue. Although a gradient in tissue concentrations was observed from north to south, none of the tissue concentrations reached levels known to cause toxicity in either otter or mink.
The bald eagle (Haliaeetus leucocephalus) once experienced near-extinction but has since rebounded. For decades, bald eagles near the Wisconsin River, USA, have experienced a lethal syndrome with characteristic clinical and pathological features but unknown etiology. Here, we describe a novel hepacivirus-like virus (Flaviviridae: Hepacivirus) identified during an investigation of Wisconsin River eagle syndrome (WRES). Bald eagle hepacivirus (BeHV) belongs to a divergent clade of avian viruses that share features with members of the genera Hepacivirus and Pegivirus. BeHV infected 31.9% of eagles spanning 4,254 km of the coterminous USA, with negative strand viral RNA demonstrating active replication in liver tissues. Eagles from Wisconsin were approximately 10-fold more likely to be infected than eagles from elsewhere. Eagle mitochondrial DNA sequences were homogeneous and geographically unstructured, likely reflecting a recent population bottleneck, whereas BeHV envelope gene sequences showed strong population genetic substructure and isolation by distance, suggesting localized transmission. Cophylogenetic analyses showed no congruity between eagles and their viruses, supporting horizontal rather than vertical transmission. These results expand our knowledge of the Flaviviridae, reveal a striking pattern of decoupled host/virus coevolution on a continental scale, and highlight knowledge gaps about health and conservation in even the most iconic of wildlife species.
River otters are fish-eating wildlife that bioaccumulate high levels of mercury (Hg). Mercury is a proven neurotoxicant to mammalian wildlife, but little is known about the underlying, sub-clinical effects. Here, the overall goal was to increase understanding of Hg's neurological risk to otters. First, Hg values across several brain regions and tissues were characterized. Second, in three brain regions with known sensitivity to Hg (brainstem, cerebellum, and occipital cortex), potential associations among Hg levels and neurochemical biomarkers [N-methyl-D-aspartic acid (NMDA) and gamma-aminobutyric acid (GABAA) receptor] were explored. There were no significant differences in Hg levels across eight brain regions (rank order, highest to lowest: frontal cortex, cerebellum, temporal cortex, occipital cortex, parietal cortex, basal ganglia, brainstem, and thalamus), with mean values ranging from 0.7 to 1.3 ug/g dry weight. These brain levels were significantly lower than mean values in the muscle (2.1 ± 1.4 ug/g), liver (4.7 ± 4.3 ug/g), and fur (8.8 ± 4.8 ug/g). While a significant association was found between Hg and NMDA receptor levels in the brain stem (P = 0.028, rp = -0.293), no relationships were found in the cerebellum and occipital cortex. For the GABA receptor, no relationships were found. The lack of consistent Hg-associated neurochemical changes is likely due to low brain Hg levels in these river otters, which are amongst the lowest reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.