Cardiovascular disease is the leading cause of mortality worldwide. Atherosclerosis, one of the most common forms of the disease, is characterized by a gradual formation of atherosclerotic plaque, hardening, and narrowing of the arteries. Nanomaterials can serve as powerful delivery platforms for atherosclerosis treatment. However, their therapeutic efficacy is substantially limited in vivo due to nonspecific clearance by the mononuclear phagocytic system. In order to address this limitation, rapamycin (RAP)‐loaded poly(lactic‐ co ‐glycolic acid) (PLGA) nanoparticles are cloaked with the cell membrane of red blood cells (RBCs), creating superior nanocomplexes with a highly complex functionalized bio‐interface. The resulting biomimetic nanocomplexes exhibit a well‐defined “core–shell” structure with favorable hydrodynamic size and negative surface charge. More importantly, the biomimetic nature of the RBC interface results in less macrophage‐mediated phagocytosis in the blood and enhanced accumulation of nanoparticles in the established atherosclerotic plaques, thereby achieving targeted drug release. The biomimetic nanocomplexes significantly attenuate the progression of atherosclerosis. Additionally, the biomimetic nanotherapy approach also displays favorable safety properties. Overall, this study demonstrates the therapeutic advantages of biomimetic nanotherapy for atherosclerosis treatment, which holds considerable promise as a new generation of drug delivery system for safe and efficient management of atherosclerosis.
Atherosclerosis (AS), the underlying cause of most cardiovascular events, is one of the most common causes of human morbidity and mortality worldwide due to the lack of an efficient strategy for targeted therapy. In this work, we aimed to develop an ideal biomimetic nanoparticle for targeted AS therapy. Methods: Based on macrophage “homing” into atherosclerotic lesions and cell membrane coating nanotechnology, biomimetic nanoparticles (MM/RAPNPs) were fabricated with a macrophage membrane (MM) coating on the surface of rapamycin-loaded poly (lactic-co-glycolic acid) copolymer (PLGA) nanoparticles (RAPNPs). Subsequently, the physical properties of the MM/RAPNPs were characterized. The biocompatibility and biological functions of MM/RAPNPs were determined in vitro . Finally, in AS mouse models, the targeting characteristics, therapeutic efficacy and safety of the MM/RAPNPs were examined. Results: The advanced MM/RAPNPs demonstrated good biocompatibility. Due to the MM coating, the nanoparticles effectively inhibited the phagocytosis by macrophages and targeted activated endothelial cells in vitro . In addition, MM-coated nanoparticles effectively targeted and accumulated in atherosclerotic lesions in vivo . After a 4-week treatment program, MM/RAPNPs were shown to significantly delay the progression of AS. Furthermore, MM/RAPNPs displayed favorable safety performance after long-term administration. Conclusion: These results demonstrate that MM/RAPNPs could efficiently and safely inhibit the progression of AS. These biomimetic nanoparticles may be potential drug delivery systems for safe and effective anti-AS applications.
In this paper we present a general model of drug release from a drug delivery device and the subsequent transport in biological tissue. The model incorporates drug diffusion, dissolution and solubility in the polymer coating, coupled with diffusion, convection and reaction in the biological tissue. Each layer contains bound and free drug phases so that the resulting model is a coupled two-phase two-layer system of partial differential equations. One of the novelties is the generality of the model in each layer. Within the drug coating, our model includes diffusion as well as three different models of dissolution. We show that the model may also be used in cases where dissolution is rapid or not relevant, and additionally when drug release is not limited by its solubility. Within the biological tissue, the model can account for nonlinear saturable reversible binding, with linear reversible binding and linear irreversible binding being recovered as special cases. The generality of our model will allow the simulation of the release from a wide range of drug delivery devices encompassing many different applications. To demonstrate the efficacy of our model we simulate results for the particular application of drug release from arterial stents.
Drug-eluting stents have revolutionised the treatment of coronary artery disease. These small medical devices have attracted much interest over the past decade from biologists, clinicians, engineers and mathematicians alike. This article provides a comprehensive review of the modelling of drug release from arterial stents and the subsequent drug transport through arterial tissue, and acts as a useful reference equally for those who are already involved in drug-eluting stents research and for those who are starting out in the field. Assembled in this review are the main models of drug release and arterial drug transport that have been published in the literature to date. Many of the models presented in this paper have evolved from drug transport models in other applications. Furthermore, the ideas presented in this review may also be extended to other drug-delivery applications, such as drug coated balloons, transdermal patches and therapeutic contact lenses.
In this study, we consider a family of mathematical models to describe the elution of drug from polymer-coated stents into the arterial wall. Our models include the polymer layer, the media, the adventitia, a possible topcoat polymer layer and atherosclerotic plaque. We investigate the relative importance of transmural convection, diffusion and drug-dependent parameters in drug delivery and deposition. Furthermore, we investigate how the release rate from the stent can be altered and examine the resulting effect on cellular drug concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.