Objective: To understand better the public perception and comprehension of medical technology such as artificial intelligence (AI) and robotic surgery. In addition to this, to identify sensitivity to their use to ensure acceptability and quality of counseling. Subjects and Methods: A survey was conducted on a convenience sample of visitors to the MN Minnesota State Fair (n = 264). Participants were randomized to receive one of two similar surveys. In the first, a diagnosis was made by a physician and in the second by an AI application to compare confidence in human and computerbased diagnosis. Results: The median age of participants was 45 (interquartile range 28-59), 58% were female (n = 154) vs 42% male (n = 110), 69% had completed at least a bachelor's degree, 88% were Caucasian (n = 233) vs 12% ethnic minorities (n = 31) and were from 12 states, mostly from the Upper Midwest. Participants had nearly equal trust in AI vs physician diagnoses. However, they were significantly more likely to trust an AI diagnosis of cancer over a doctor's diagnosis when responding to the version of the survey that suggested that an AI could make medical diagnoses (p = 9.32e-06). Though 55% of respondents (n = 145) reported that they were uncomfortable with automated robotic surgery, the majority of the individuals surveyed (88%) mistakenly believed that partially autonomous surgery was already happening. Almost all (94%, n = 249) stated that they would be willing to pay for a review of medical imaging by an AI if available. Conclusion: Most participants express confidence in AI providing medical diagnoses, sometimes even over human physicians. Participants generally express concern with surgical AI, but they mistakenly believe that it is already being performed. As AI applications increase in medical practice, health care providers should be cognizant of the potential amount of misinformation and sensitivity that patients have to how such technology is represented.
Prostate cancer (CaP) driven by androgen receptor (AR) is treated with androgen deprivation; however, therapy failure results in lethal castration-resistant prostate cancer (CRPC). AR-low/negative (ARL/−) CRPC subtypes have recently been characterized and cannot be targeted by hormonal therapies, resulting in poor prognosis. RNA-binding protein (RBP)/helicase DDX3 (DEAD-box helicase 3 X-linked) is a key component of stress granules (SG) and is postulated to affect protein translation. Here, we investigated DDX3-mediated posttranscriptional regulation of AR mRNA (messenger RNA) in CRPC. Using patient samples and preclinical models, we objectively quantified DDX3 and AR expression in ARL/− CRPC. We utilized CRPC models to identify DDX3:AR mRNA complexes by RNA immunoprecipitation, assess the effects of DDX3 gain/loss-of-function on AR expression and signaling, and address clinical implications of targeting DDX3 by assessing sensitivity to AR-signaling inhibitors (ARSI) in CRPC xenografts in vivo. ARL/− CRPC expressed abundant AR mRNA despite diminished levels of AR protein. DDX3 protein was highly expressed in ARL/− CRPC, where it bound to AR mRNA. Consistent with a repressive regulatory role, DDX3 localized to cytoplasmic puncta with SG marker PABP1 in CRPC. While induction of DDX3-nucleated SGs resulted in decreased AR protein expression, inhibiting DDX3 was sufficient to restore 1) AR protein expression, 2) AR signaling, and 3) sensitivity to ARSI in vitro and in vivo. Our findings implicate the RBP protein DDX3 as a mechanism of posttranscriptional regulation for AR in CRPC. Clinically, DDX3 may be targetable for sensitizing ARL/− CRPC to AR-directed therapies.
626 Background: The 2019 Kidney and Kidney Tumor Segmentation challenge (KiTS19) was an international competition held in conjunction with the 2019 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) and sought to stimulate progress on this automatic segmentation frontier. Growing rates of kidney tumor incidence led to research into the use of artificial inteligence (AI) to radiographically differentiate and objectively characterize these tumors. Automated segmentation using AI objectively quantifies complexity and aggression of renal tumors to better differentiate and describe the tumors for improved treatment decision making. Methods: A training set of over 31,000 CT images from 210 patients with kidney tumors was publicly released with corresponding semantic segmentation masks. 106 teams from five continents used this data to develop automated deep learning systems to predict the true segmentation masks on a test set of an additional 13,500 CT images in 90 patients for which the corresponding ground truth segmentations were kept private. These predictions were scored and ranked according to their average Sørensen-Dice coefficient between kidney and tumor across the 90 test cases. Results: The winning team achieved a Dice of 0.974 for kidney and 0.851 for tumor, approaching the human inter-annotator performance on kidney (0.983) but falling short on tumor (0.923). This challenge has now entered an “open leaderboard” phase where it serves as a challenging benchmark in 3D semantic segmentation. Conclusions: Results of the KiTS19 challenge show deep learning methods are fully capable of reliable segmentation of kidneys and kidney tumors. The KiTS19 challenge attracted a high number of submissions and serves as an important and challenging benchmark in 3D segmentation. The publicly available data will further propel the use of automated 3D segmentation analysis. Fully segmented kidneys and tumors allow for automated calculation of all types of nephrometry, tumor textural variation and discovery of new predictive features important for personalized medicine and accurate prediction of patient relevant outcomes.
Metastatic castration resistant prostate cancers (mCRPC) are treated with therapies that antagonize the androgen receptor (AR). Nearly all patients develop resistance to AR-targeted therapies (ART). Our previous work identified CREB5 as an upregulated target gene in human mCRPC that promoted resistance to all clinically-approved ART. The mechanisms by which CREB5 promotes progression of mCRPC or other cancers remains elusive. Integrating ChIP-seq and rapid immunoprecipitation and mass spectroscopy of endogenous proteins (RIME), we report that cells overexpressing CREB5 demonstrate extensive reprogramming of nuclear protein-protein interactions in response to the ART agent enzalutamide. Specifically, CREB5 physically interacts with AR, the pioneering actor FOXA1, and other known co-factors of AR and FOXA1 at transcription regulatory elements recently found to be active in mCRPC patients. We identified a subset of CREB5/FOXA1 co-interacting nuclear factors that have critical functions for AR transcription (GRHL2, HOXB13) while others (TBX3, NFIC) regulated cell viability and ART resistance and were amplified or overexpressed in mCRPC. Upon examining the nuclear protein interactions and the impact of CREB5 expression on the mCRPC patient transcriptome, we found CREB5 was associated with Wnt signaling and epithelial to mesenchymal transitions, implicating these pathways in CREB5/FOXA1-mediated ART resistance. Overall, these observations define the molecular interactions among CREB5, FOXA1, and pathways that promote ART resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.