A novel type of microfluidic absorbance cell is presented here that inlays black poly(methyl methacrylate) (PMMA) into a clear PMMA substrate to realize an isolated optical channel with microlitre volumes. Optical measurements are frequently performed on microfluidic devices, offering effective, quick, and robust chemical analysis capabilities on small amounts of sample. Many lab-on-chip systems utilize micrometer-sized channels to analyze liquid samples via light-absorbance measurements, but this requires sophisticated coordination of light through a small cross-section, often requiring collimating and beam-steering optics. Here, we detail the fabrication process to realize long path length absorbance cells based on a simple hybrid-material approach. A z-shape microchannel structure crosses a clear-black interface at both ends of the absorbance cell, thereby creating integral optical windows that permit light coupling into a microchannel completely embedded in black PMMA. Furthermore, we have integrated v-groove prisms on either side of the microfluidic channel. The prisms enabled seamless integration with printed circuit boards and permit the optical elements to be located off-chip without use of epoxies or adhesives. Three path lengths, 10.4, 25.4, and 50.4 mm, were created and used to characterize the novel cell design using typical colorimetric measurements for nitrite and phosphate. We compare the attenuation coefficient measured by our optical cells with the literature, showing excellent agreement across nutrient concentrations from 50 nM–50 μM. The measurements were performed with well-known reagent-based methods, namely the Griess assay for nitrite and the molybdovanadophosphoric acid or the ‘yellow method’ for phosphate. The longest 50.4 mm path length cell had a limit-of-detection of 6 nM for nitrite and 40 nM for phosphate, using less than 12 μl of fluid. The inlaid fabrication method described permits robust and high-performance optical measurements with broad applicability for in situ marine sensors and for numerous lab-on-chip sensors based on colorimetric assays. One such application is shown whereby two inlaid absorbance cells are integrated with four microfluidic check valves to realize a complete lab-on-chip nitrite sensor.
In situ sensors are needed to further our understanding of phosphate flux dynamics in marine environments during short term events such as tidal cycles, algae blooms and runoff periods. Here,...
We have designed, built, tested, and deployed an autonomous in situ analyzer for seawater total alkalinity. Such analyzers are required to understand the ocean carbon cycle, including anthropogenic carbon dioxide (CO2) uptake and for mitigation efforts via monitoring, reporting, and verification of carbon dioxide removal through ocean alkalinity enhancement. The microfluidic nature of our instrument makes it relatively lightweight, reagent efficient, and amenable for use on platforms that would carry it on long-term deployments. Our analyzer performs a series of onboard closed-cell titrations with three independent stepper-motor driven syringe pumps, providing highly accurate mixing ratios that can be systematically swept through a range of pH values. Temperature effects are characterized over the range 5–25 °C allowing for field use in most ocean environments. Each titration point requires approximately 170 μL of titrant, 830 μL of sample, 460 J of energy, and a total of 105 s for pumping and optical measurement. The analyzer performance is demonstrated through field data acquired at two sites, representing a cumulative 25 days of operation, and is evaluated against laboratory measurements of discrete water samples. Once calibrated against onboard certified reference material, the analyzer showed an accuracy of −0.17 ± 24 μmol kg–1. We further report a precision of 16 μmol kg–1, evaluated on repeated in situ measurements of the aforementioned certified reference material. The total alkalinity analyzer presented here will allow measurements to take place in remote areas over extended periods of time, facilitating affordable observations of a key parameter of the ocean carbon system with high spatial and temporal resolution.
Presented here is the fabrication and characterization of a tunable microfluidic check valve for use in marine nutrient sensing. The ball-style valve makes use of a rare-earth permanent magnet, which exerts a pulling force to ensure it remains passively sealed until the prescribed cracking pressure is met. By adjusting the position of the magnet, the cracking pressure is shown to be customizable to meet design requirements. Further applicability is shown by integrating the valve into a poly(methyl methacrylate) (PMMA) lab-on-chip device with an integrated optical absorbance cell for nitrite detection in seawater. Micro-milling is used to manufacture both the valve and the micro-channel structures. The valve is characterized up to a flow rate of 14 mL min−1 and exhibits low leakage rates at high back pressures (<2 µL min−1 at ~350 kPa). It is low cost, requires no power, and is easily implemented on microfluidic platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.