One focus of modern astronomy is to detect temperate terrestrial exoplanets well-suited for atmospheric characterisation. A milestone was recently achieved with the detection of three Earth-sized planets transiting (i.e. passing in front of) a star just 8% the mass of the Sun 12 parsecs away1. Indeed, the transiting configuration of these planets combined with the Jupiter-like size of their host star - named TRAPPIST-1 - makes possible in-depth studies of their atmospheric properties with current and future astronomical facilities1,2,3. Here we report the results of an intensive photometric monitoring campaign of that star from the ground and with the Spitzer Space Telescope. Our observations reveal that at least seven planets with sizes and masses similar to the Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.21, 12.35 days) are near ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inward4,5. The seven planets have equilibrium temperatures low enough to make possible liquid water on their surfaces6,7,8.
Jupiter and Saturn formed in a few million years (ref. 1) from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only ∼100,000 years (ref. 2). Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later, and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 au is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 au, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 au; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 au and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.
Icarus, 203, pp. 644-662 (2009)International audienc
ABSTRACT"Hot super-Earths" (or "Mini-Neptunes") between 1 and 4 times Earth's size with period shorter than 100 days orbit 30-50% of Sun-like type stars. Their orbital configuration -measured as the period ratio distribution of adjacent planets in multi-planet systems -is a strong constraint for formation models. Here we use N-body simulations with synthetic forces from an underlying evolving gaseous disk to model the formation and long-term dynamical evolution of super-Earth systems. While the gas disk is present, planetary embryos grow and migrate inward to form a resonant chain anchored at the inner edge of the disk. These resonant chains are far more compact than the observed super-Earth systems. Once the gas dissipates resonant chains may become dynamically unstable. They undergo a phase of giant impacts that spreads the systems out. Disk turbulence has no measurable effect on the outcome. Our simulations match observations if a small fraction of resonant chains remain stable, while most super-Earths undergo a late dynamical instability. Our statistical analysis restricts the contribution of stable systems to less than 25%. Our results also suggest that the large fraction of observed single planet systems does not necessarily imply any dichotomy in the architecture of planetary systems. Finally, we use the low abundance of resonances in Kepler data to argue that, in reality, the survival of resonant chains happens likely only in ∼ 5% of the cases. This leads to a mystery: in our simulations only 50-60% of resonant chains became unstable whereas at least 75% (and probably 90-95%) must be unstable to match observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.