Abstract:In order to progress from the lab to commercial applications it will be necessary to develop industrially scalable methods to produce large quantities of defect-free graphene.Here we show that high-shear mixing of graphite in suitable, stabilizing liquids results in large-scale exfoliation to give dispersions of graphene nanosheets. XPS and Raman spectroscopy show the exfoliated flakes to be unoxidised and free of basal plane defects. We have developed a simple model which shows exfoliation to occur once the local shear rate exceeds 10 4 s -1 . By fully characterizing the scaling behaviour of the graphene production rate, we show that exfoliation can be achieved in liquid volumes from 100s of ml up to 100s of litres and beyond. The graphene produced by this method performs well in applications from composites to conductive coatings. This method can be applied to exfoliate BN, MoS2 and a range of other layered crystals.
Main Text:Due to its ultra-thin, 2-dimensional nature and its unprecedented combination of physical properties, graphene has become the most studied of all nano-materials. In the next decade graphene is likely to find commercial applications in many areas from high-frequency electronics to smart coatings.
Deregulated ribosomal RNA synthesis is associated with uncontrolled cancer cell proliferation. RNA polymerase (Pol) I, the multiprotein complex that synthesizes rRNA, is activated widely in cancer. Thus, selective inhibitors of Pol I may offer a general therapeutic strategy to block cancer cell proliferation. Coupling medicinal chemistry efforts to tandem cell-and molecular-based screening led to the design of CX-5461, a potent small-molecule inhibitor of rRNA synthesis in cancer cells. CX-5461 selectively inhibits Pol I-driven transcription relative to Pol II-driven transcription, DNA replication, and protein translation. Molecular studies demonstrate that CX-5461 inhibits the initiation stage of rRNA synthesis and induces both senescence and autophagy, but not apoptosis, through a p53-independent process in solid tumor cell lines. CX-5461 is orally bioavailable and demonstrates in vivo antitumor activity against human solid tumors in murine xenograft models. Our findings position CX-5461 for investigational clinical trials as a potent, selective, and orally administered agent for cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.