bRespiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. Increased airway resistance and increased airway mucin production are two manifestations of RSV infection in children. RSV rA2-line19F infection induces pulmonary mucous production and increased breathing effort in BALB/c mice and provides a way to assess these manifestations of RSV disease in an animal model. In the present study, we investigated the effect of prophylactic treatment with the F(ab=) 2 form of the anti-G protein monoclonal antibody (MAb) 131-2G on disease in RSV rA2-line19F-challenged mice. F(ab=) 2 131-2G does not affect virus replication. It and the intact form that does decrease virus replication prevented increased breathing effort and airway mucin production, as well as weight loss, pulmonary inflammatory-cell infiltration, and the pulmonary substance P and pulmonary Th2 cytokine levels that occur in mice challenged with this virus. These data suggest that the RSV G protein contributes to prominent manifestations of RSV disease and that MAb 131-2G can prevent these manifestations of RSV disease without inhibiting virus infection.
Respiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. To clarify the potential for an anti-G mAb, 131-2G which has both anti-viral and anti-inflammatory effects, to effectively treat RSV disease, we determined the kinetics of its effect compared to the effect of the anti-F mAb, 143-6C on disease in mice. Treatment administered three days after RSV rA2-line19F (r19F) infection showed 131-2G decreased breathing effort, pulmonary mucin levels, weight loss, and pulmonary inflammation earlier and more effectively than treatment with mAb 143-6C. Both mAbs stopped lung virus replication at day 5 post-infection. These data show that, in mice, anti-G protein mAb is superior to treating disease during RSV infection than an anti-F protein mAb similar to Palivizumab. This combination of anti-viral and anti-inflammatory activity makes 131-2G a promising candidate for treating for active human RSV infection.
Respiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. Through a CX3C chemokine motif ( 182 CWAIC 186 ) in the G protein, RSV binds to the corresponding chemokine receptor, CX3CR1. Since RSV binding to CX3CR1 contributes to disease pathogenesis, we investigated whether a mutation in the CX3C motif by insertion of an alanine, A 186 , within the CX3C motif, mutating it to CX4C ( 182 CWAIAC 187 ), which is known to block binding to CX3CR1, might decrease disease. We studied the effect of the CX4C mutation in two strains of RSV (A2 and r19F) in a mouse challenge model. We included RSV r19F because it induces mucus production and airway resistance, two manifestations of RSV infection in humans, in mice. Compared to wild-type (wt) virus, mice infected with CX4C had a 0.7 to 1.2 log 10 -fold lower virus titer in the lung at 5 days postinfection (p.i.) and had markedly reduced weight loss, pulmonary inflammatory cell infiltration, mucus production, and airway resistance after challenge. This decrease in disease was not dependent on decrease in virus replication but did correspond to a decrease in pulmonary Th2 and inflammatory cytokines. Mice infected with CX4C viruses also had higher antibody titers and a Th1-biased T cell memory response at 75 days p.i. These results suggest that the CX4C mutation in the G protein could improve the safety and efficacy of a live attenuated RSV vaccine.IMPORTANCE RSV binds to the corresponding chemokine receptor, CX3CR1, through a CX3C chemokine motif ( 182 CWAIC 186 ) in the G protein. RSV binding to CX3CR1 contributes to disease pathogenesis; therefore, we investigated whether a mutation in the CX3C motif by insertion of an alanine, A 186 , within the CX3C motif, mutating it to CX4C ( 182 CWAIAC 187 ), known to block binding to CX3CR1, might decrease disease. The effect of this mutation and treatment with the F(ab=) 2 form of the anti-RSV G 131-2G monoclonal antibody (MAb) show that mutating the CX3C motif to CX4C blocks much of the disease and immune modulation associated with the G protein and should improve the safety and efficacy of a live attenuated RSV vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.