Span identification (in short, span ID) tasks such as chunking, NER, or code-switching detection, ask models to identify and classify relevant spans in a text. Despite being a staple of NLP, and sharing a common structure, there is little insight on how these tasks' properties influence their difficulty, and thus little guidance on what model families work well on span ID tasks, and why. We analyze span ID tasks via performance prediction, estimating how well neural architectures do on different tasks.Our contributions are: (a) we identify key properties of span ID tasks that can inform performance prediction; (b) we carry out a large-scale experiment on English data, building a model to predict performance for unseen span ID tasks that can support architecture choices; (c), we investigate the parameters of the meta model, yielding new insights on how model and task properties interact to affect span ID performance. We find, e.g., that span frequency is especially important for LSTMs, and that CRFs help when spans are infrequent and boundaries non-distinctive.
We present the results of our system for SemEval-2020 Task 1 that exploits a commonly used lexical semantic change detection model based on Skip-Gram with Negative Sampling. Our system focuses on Vector Initialization (VI) alignment, compares VI to the currently top-ranking models for Subtask 2 and demonstrates that these can be outperformed if we optimize VI dimensionality. We demonstrate that differences in performance can largely be attributed to model-specific sources of noise, and we reveal a strong relationship between dimensionality and frequency-induced noise in VI alignment. Our results suggest that lexical semantic change models integrating vector space alignment should pay more attention to the role of the dimensionality parameter.
The detection of quotations (i.e., reported speech, thought, and writing) has established itself as an NLP analysis task. However, state-of-the-art models have been developed on the basis of specific corpora and incorporate a high degree of corpus-specific assumptions and knowledge, which leads to fragmentation. In the spirit of task-agnostic modeling, we present a corpus-agnostic neural model for quotation detection and evaluate it on three corpora that vary in language, text genre, and structural assumptions. The model (a) approaches the state-of-the-art on the corpora when using established feature sets and (b) shows reasonable performance even when using solely word forms, which makes it applicable for non-standard (i.e., historical) corpora.
Most machine learning systems for natural language processing are tailored to specific tasks. As a result, comparability of models across tasks is missing and their applicability to new tasks is limited. This affects end users without machine learning experience as well as model developers. To address these limitations, we present DERE, a novel framework for declarative specification and compilation of templatebased information extraction. It uses a generic specification language for the task and for data annotations in terms of spans and frames. This formalism enables the representation of a large variety of natural language processing challenges. The backend can be instantiated by different models, following different paradigms. The clear separation of frame specification and model backend will ease the implementation of new models and the evaluation of different models across different tasks. Furthermore, it simplifies transfer learning, joint learning across tasks and/or domains as well as the assessment of model generalizability. DERE is available as open-source software.
Most modern approaches to computing word embeddings assume the availability of text corpora with billions of words. In this paper, we explore a setup where only corpora with millions of words are available, and many words in any new text are out of vocabulary. This setup is both of practical interest -modeling the situation for specific domains and low-resource languages -and of psycholinguistic interest, since it corresponds much more closely to the actual experiences and challenges of human language learning and use. We evaluate skip-gram word embeddings and two types of character-based embeddings on word relatedness prediction. On large corpora, performance of both model types is equal for frequent words, but character awareness already helps for infrequent words. Consistently, on small corpora, the characterbased models perform overall better than skipgrams. The concatenation of different embeddings performs best on small corpora and robustly on large corpora.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.