Difficulty with turning is a major contributor to mobility disability and falls in people with movement disorders, such as Parkinson's disease (PD). Turning often results in freezing and/or falling in patients with PD. However, asking a patient to execute a turn in the clinic often does not reveal their impairments. Continuous monitoring of turning with wearable sensors during spontaneous daily activities may help clinicians and patients determine who is at risk of falls and could benefit from preventative interventions. In this study, we show that continuous monitoring of natural turning with wearable sensors during daily activities inside and outside the home is feasible for people with PD and elderly people. We developed an algorithm to detect and characterize turns during gait, using wearable inertial sensors. First, we validate the turning algorithm in the laboratory against a Motion Analysis system and against a video analysis of 21 PD patients and 19 control (CT) subjects wearing an inertial sensor on the pelvis. Compared to Motion Analysis and video, the algorithm maintained a sensitivity of 0.90 and 0.76 and a specificity of 0.75 and 0.65, respectively. Second, we apply the turning algorithm to data collected in the home from 12 PD and 18 CT subjects. The algorithm successfully detects turn characteristics, and the results show that, compared to controls, PD subjects tend to take shorter turns with smaller turn angles and more steps. Furthermore, PD subjects show more variability in all turn metrics throughout the day and the week.
Background Difficulty turning during gait is a major contributor to mobility disability, falls and reduced quality of life in patients with Parkinson’s disease (PD). Unfortunately, the assessment of mobility in the clinic may not adequately reflect typical mobility function or its variability during daily life. We hypothesized that quality of turning mobility, rather than overall quantity of activity, would be impaired in people with PD over 7 days of continuous recording. Methods 13 subjects with PD and 8 healthy control subjects of similar age wore 3 Opal inertial sensors (on their belt and on each foot) throughout 7 consecutive days during normal daily activities. Turning metrics included average and coefficient of variation (CV) of: 1) number of turns per hour, 2) turn angle amplitude, 3) turn duration, 4) turn mean velocity, and 5) number of steps per turn. Turning characteristics during continuous monitoring were compared with turning 90 and 180 degrees in a observed gait task. Results No differences were found between PD and control groups for observed turns. In contrast, subjects with PD showed impaired quality of turning compared to healthy control subjects (Turn Mean Velocity: 43.3±4.8°/s versus 38±5.7°/s, mean number of steps 1.7±1.1 versus 3.2±0.8). In addition, PD patients showed higher variability within the day and across days compared to controls. However, no differences were seen between PD and control subjects in the overall activity (number of steps per day or percent of the day walking) during the 7 days. Conclusions We show that continuous monitoring of natural turning during daily activities inside or outside the home is feasible for patients with PD and the elderly. This is the first study showing that continuous monitoring of turning was more sensitive to PD than observed turns. In addition, the quality of turning characteristics was more sensitive to PD than quantity of turns. Characterizing functional turning during daily activities will address a critical barrier to rehabilitation practice and clinical trials: objective measures of mobility characteristics in real-life environments.
Within the reliability limits of our study methods, none of the three APs tested has lower skin impedance than at either of the nearby control points. These results are not consistent with previous studies that detected lower skin impedance at APs than nearby sites. Further study is necessary to determine whether MPs have lower skin impedance than nearby NPs. Our study suggests caution is warranted when developing, using, and interpreting results from electrodermal screening devices. Further studies are needed to clarify the clinically important and controversial hypothesis that APs are sites of lower impedance.
Background Clinical practice for rehabilitation after mild traumatic brain injury (mTBI) is variable, and guidance on when to initiate physical therapy is lacking. Wearable sensor technology may aid clinical assessment, performance monitoring, and exercise adherence, potentially improving rehabilitation outcomes during unsupervised home exercise programs. Objective The objectives of this study were to: (1) determine whether initiating rehabilitation earlier than typical will improve outcomes after mTBI, and (2) examine whether using wearable sensors during a home-exercise program will improve outcomes in participants with mTBI. Design This was a randomized controlled trial. Setting This study will take place within an academic hospital setting at Oregon Health & Science University and Veterans Affairs Portland Health Care System, and in the home environment. Participants This study will include 160 individuals with mTBI. Intervention The early intervention group (n = 80) will receive one-on-one physical therapy 8 times over 6 weeks and complete daily home exercises. The standard care group (n = 80) will complete the same intervention after a 6- to 8-week wait period. One-half of each group will receive wearable sensors for therapist monitoring of patient adherence and quality of movements during their home exercise program. Measurements The primary outcome measure will be the Dizziness Handicap Inventory score. Secondary outcome measures will include symptomatology, static and dynamic postural control, central sensorimotor integration posturography, and vestibular-ocular-motor function. Limitations Potential limitations include variable onset of care, a wide range of ages, possible low adherence and/or withdrawal from the study in the standard of care group, and low Dizziness Handicap Inventory scores effecting ceiling for change after rehabilitation. Conclusions If initiating rehabilitation earlier improves primary and secondary outcomes post-mTBI, this could help shape current clinical care guidelines for rehabilitation. Additionally, using wearable sensors to monitor performance and adherence may improve home exercise outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.