Electrochemical measurements of the nucleation rate of individual H bubbles at the surface of Pt nanoelectrodes (radius = 7-41 nm) are used to determine the critical size and geometry of H nuclei leading to stable bubbles. Precise knowledge of the H concentration at the electrode surface, C, is obtained by controlled current reduction of H in a HSO solution. Induction times of single-bubble nucleation events are measured by stepping the current, to control C, while monitoring the voltage. We find that gas nucleation follows a first-order rate process; a bubble spontaneously nucleates after a stochastic time delay, as indicated by a sudden voltage spike that results from impeded transport of H to the electrode. Hundreds of individual induction times, at different applied currents and using different Pt nanoelectrodes, are used to characterize the kinetics of phase nucleation. The rate of bubble nucleation increases by four orders of magnitude (0.3-2000 s) over a very small relative change in C (0.21-0.26 M, corresponding to a ∼0.025 V increase in driving force). Classical nucleation theory yields thermodynamic radii of curvature for critical nuclei of 4.4 to 5.3 nm, corresponding to internal pressures of 330 to 270 atm, and activation energies for nuclei formation of 14 to 26 kT, respectively. The dependence of nucleation rate on H concentration indicates that nucleation occurs by a heterogeneous mechanism, where the nuclei have a contact angle of ∼150° with the electrode surface and contain between 35 and 55 H molecules.
Exploring the nucleation of gas bubbles at interfaces is of fundamental interest. Herein, we report the nucleation of individual N2 nanobubbles at Pt nanodisk electrodes (6–90 nm) via the irreversible electrooxidation of hydrazine (N2H4 → N2 + 4H(+) + 4e(–)). The nucleation and growth of a stable N2 nanobubble at the Pt electrode is indicated by a sudden drop in voltammetric current, a consequence of restricted mass transport of N2H4 to the electrode surface following the liquid-to-gas phase transition. The critical surface concentration of dissolved N2 required for nanobubble nucleation, CN2,critical(s), obtained from the faradaic current at the moment just prior to bubble formation, is measured to be ∼0.11 M and is independent of the electrode radius and the bulk N2H4 concentration. Our results suggest that the size of stable gas bubble nuclei depends only on the local concentration of N2 near the electrode surface, consistent with previously reported studies of the electrogeneration of H2 nanobubbles. CN2,critical(s) is ∼160 times larger than the N2 saturation concentration at room temperature and atmospheric pressure. The residual current for N2H4 oxidation after formation of a stable N2 nanobubble at the electrode surface is proportional to the N2H4 concentration as well as the nanoelectrode radius, indicating that the dynamic equilibrium required for the existence of a stable N2 nanobubble is determined by N2H4 electrooxidation at the three phase contact line.
The development of nanopore fabrication methods during the past decade has led to the resurgence of resistive-pulse analysis of nanoparticles. The newly developed resistive-pulse methods enable researchers to simultaneously study properties of a single nanoparticle and statistics of a large ensemble of nanoparticles. This review covers the basic theory and recent advances in applying resistive-pulse analysis and extends to more complex transport motion (e.g., stochastic thermal motion of a single nanoparticle) and unusual electrical responses (e.g., resistive-pulse response sensitive to surface charge), followed by a brief summary of numerical simulations performed in this field. We emphasize the forces within a nanopore governing translocation of low-aspect-ratio, nondeformable particles but conclude by also considering soft materials such as liposomes and microgels.
Conical nanopores are a powerful tool for characterizing nanoscale particles and even small molecules.Although the technique provides a wealth of information, such pores are limited in their ability to investigate particle dynamics due to high particle velocities through a very short sensing zone. In this report, we demonstrate the use of applied pressure to balance electrokinetic forces acting on 8 nm diameter Au nanoparticles as they translocate through a ∼10 nm diameter orifice. This force balance provides a means to vary nanoparticle velocity by 3 orders of magnitude, allowing for their detection and characterization on time scales as long as 100 ms. We studied nanoparticles having different zeta potentials by varying salt concentration, applied pressure, and voltage to reveal the point at which forces are balanced and the particle velocities approach zero. Variation of the voltage around this force balance point provides a means to precisely control the magnitude and direction of the particle translocation velocity. Nanoparticle velocities computed from finite-element simulations as a function of applied pressure and voltage yield predictions in semiquantitative agreement with the experimental results. Optimizing the conditions of these techniques will allow the characterization of particles and their dynamics down to the smallest end of the nanoscale range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.