Automatic classification of electrocardiogram (ECG) signals is important for diagnosing heart arrhythmias. A big challenge in automatic ECG classification is the variation in the waveforms and characteristics of ECG signals among different patients. To address this issue, this paper proposes adapting a patient-independent deep neural network (DNN) using the information in the patient-dependent identity vectors (i-vectors). The adapted networks, namely i-vector adapted patient-specific DNNs (iAP-DNNs), are tuned towards the ECG characteristics of individual patients. For each patient, his/her ECG waveforms are compressed into an i-vector using a factor analysis model. Then, this i-vector is injected into the middle hidden layer of the patient-independent DNN. Stochastic gradient descent is then applied to fine-tune the whole network to form a patient-specific classifier. As a result, the adaptation makes use of not only the raw ECG waveforms from the specific patient but also the compact representation of his/her ECG characteristics through the i-vector. Analysis on the hidden-layer activations shows that by leveraging the information in the i-vectors, the iAP-DNNs are more capable of discriminating normal heartbeats against arrhythmic heartbeats than the networks that use the patientspecific ECG only for the adaptation. Experimental results based on the MIT-BIH database suggest that the iAP-DNNs perform better than existing patient-specific classifiers in terms of various performance measures. In particular, the sensitivity and specificity of the existing methods are all under the receiver operating characteristic curves of the iAP-DNNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.