Adolescence is a developmental period in which the mesolimbic dopaminergic “reward” circuitry of the brain, including the nucleus accumbens (NAc), undergoes significant plasticity. Dopamine D1 receptors (D1rs) in the NAc are critical for social behavior, but how these receptors are regulated during adolescence is not well understood. In this report, we demonstrate that microglia and complement-mediated phagocytic activity shapes NAc development by eliminating D1rs in male, but not female rats, during adolescence. Moreover, immune-mediated elimination of D1rs is required for natural developmental changes in male social play behavior. These data demonstrate for the first time that microglia and complement-mediated immune signaling (i) participate in adolescent brain development in a sex-specific manner, and (ii) are causally implicated in developmental changes in behavior. These data have broad implications for understanding the adolescent critical period of development, the molecular mechanisms underlying social behavior, and sex differences in brain structure and function.
Background The effects of stress, including neuroendocrine and behavioral sequelae aimed at maintaining homeostasis, are associated with increased alcohol consumption. Because both stress and drinking are multifactorial, the mechanisms underlying the relationship are difficult to elucidate. We therefore employed an animal model investigating the influence of blocked access to a running wheel on drinking in C57BL/6J (B6) mice. Methods In the first experiment, naïve, adult male and female subjects were individually housed for 2 weeks with 24hr access to a running wheel and 12% EtOH in a 2-bottle, free choice paradigm. After determining baseline consumption and preference, experimental subjects had the running wheel placed in a locked position for 6hr, and the EtOH bottle was removed during the first half of this period. Two subsequent experiments, again in adult, naïve B6 mice, examined the influence of locked running wheels on self-administration of 20% EtOH in a limited access paradigm, and blood EtOH concentrations (BECs) were determined. Results In all three studies, using both between and within subject analyses, females showed transient yet reliable increases in alcohol drinking during blocked access to a rotating activity, while drinking in male mice was largely insensitive to this manipulation, though both sexes showed appreciable BECs (>130 mg/dL in females, and 80 mg/dL in males) following a 2hr EtOH access period. Conclusions These data add to a burgeoning literature suggesting that the factors contributing to excessive alcohol use differ between males and females, and that females may be especially sensitive to the influence of wheel manipulation. Elucidating the sex-dependent mechanisms mediating differences in alcohol sensitivity and response is critical to understanding the causes of alcoholism and in developing effective treatments and interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.