Abstract. Afforestation, the conversion of non-forested lands to forest plantations, can sequester atmospheric carbon dioxide, but the rapid growth and harvesting of biomass may deplete nutrients and degrade soils if managed improperly. The goal of this study is to evaluate how afforestation affects mineral soil quality, including pH, sodium, exchangeable cations, organic carbon, and nitrogen, and to examine the magnitude of these changes regionally where afforestation rates are high. We also examine potential mechanisms to reduce the impacts of afforestation on soils and to maintain long-term productivity.Across diverse plantation types (153 sites) to a depth of 30 cm of mineral soil, we observed significant decreases in nutrient cations (Ca, K, Mg), increases in sodium (Na), or both with afforestation. Across the data set, afforestation reduced soil concentrations of the macronutrient Ca by 29% on average (P , 0.05). Afforestation by Pinus alone decreased soil K by 23% (P , 0.05). Overall, plantations of all genera also led to a mean 71% increase of soil Na (P , 0.05). Mean pH decreased 0.3 units (P , 0.05) with afforestation.Afforestation caused a 6.7% and 15% (P , 0.05) decrease in soil C and N content respectively, though the effect was driven principally by Pinus plantations (15% and 20% decrease, P , 0.05). Carbon to nitrogen ratios in soils under plantations were 5.7-11.6% higher (P , 0.05). In several regions with high rates of afforestation, cumulative losses of N, Ca, and Mg are likely in the range of tens of millions of metric tons. The decreases indicate that trees take up considerable amounts of nutrients from soils; harvesting this biomass repeatedly could impair long-term soil fertility and productivity in some locations. Based on this study and a review of other literature, we suggest that proper site preparation and sustainable harvest practices, such as avoiding the removal or burning of harvest residue, could minimize the impact of afforestation on soils. These sustainable practices would in turn slow soil compaction, erosion, and organic matter loss, maintaining soil fertility to the greatest extent possible.
Abstract. We determined the biogeographical distributions of stream bacteria and the biogeochemical factors that best explained heterogeneity for 23 locations within the Hubbard Brook watershed, a 3000-ha forested watershed in New Hampshire, USA. Our goal was to assess the factor, or set of factors, responsible for generating the biogeographical patterns exhibited by microorganisms at the landscape scale. We used DNA fingerprinting to characterize bacteria inhabiting fine benthic organic matter (FBOM) because of their important influence on stream nutrient dynamics. Across the watershed, streams of similar pH had similar FBOM bacterial communities. Streamwater pH was the single variable most strongly correlated with the relative distance between communities (Spearman's q ¼ 0.66, P , 0.001) although there were other contributing factors, including the quality of the fine benthic organic matter and the amount of dissolved organic carbon and nitrogen in the stream water (P , 0.05 for each). There was no evidence of an effect of geographic distance on bacterial community composition, suggesting that dispersal limitation has little influence on the observed biogeographical patterns in streams across this landscape. Cloning and sequencing of small-subunit rRNA genes confirmed the DNA fingerprinting results and revealed strong shifts among bacterial groups along the pH gradient. With an increase in streamwater pH, the abundance of acidobacteria in the FBOM bacterial community decreased (from 71% to 38%), and the abundance of proteobacteria increased (from 11% to 47%). Together these results suggest that microorganisms, like ''macro''-organisms, do exhibit biogeographical patterns at the landscape scale and that these patterns may be predictable based on biogeochemical factors.
We explored microbial contributions to decomposition using a sophisticated approach to DNA Stable Isotope Probing (SIP). Our experiment evaluated the dynamics and ecological characteristics of functionally defined microbial groups that metabolize labile and structural C in soils. We added to soil a complex amendment representing plant derived organic matter substituted with either 13C-xylose or 13C-cellulose to represent labile and structural C pools derived from abundant components of plant biomass. We found evidence for 13C-incorporation into DNA from 13C-xylose and 13C-cellulose in 49 and 63 operational taxonomic units (OTUs), respectively. The types of microorganisms that assimilated 13C in the 13C-xylose treatment changed over time being predominantly Firmicutes at day 1 followed by Bacteroidetes at day 3 and then Actinobacteria at day 7. These 13C-labeling dynamics suggest labile C traveled through different trophic levels. In contrast, microorganisms generally metabolized cellulose-C after 14 days and did not change to the same extent in phylogenetic composition over time. Microorganisms that metabolized cellulose-C belonged to poorly characterized but cosmopolitan soil lineages including Verrucomicrobia, Chloroflexi, and Planctomycetes.
Abstract. Amino acids are emerging as a critical component of the terrestrial N cycle, yet there is little understanding of amino acid cycling in temperate forests. This research studied the uptake and turnover of amino acid N by soil microbes and the capacity of forest trees to take up the amino acid glycine in comparison to NH 4 ϩ and NO 3 Ϫ . This research was conducted in three temperate forests located in northwest Connecticut, USA. The three forests differed in soil parent material and canopy tree species composition. At all three sites, amino acids were released from soil organic matter through the activity of proteolytic enzymes resulting in a pool of free amino acids in soil. Free amino acids were rapidly immobilized by soil microbes. A 15 N-enriched-glycine-addition experiment also showed that a significant fraction of the amino acid N taken up by soil microbes was mineralized to NH 4 ϩ with substantial nitrification at one site. Tree species from all three sites had the physiological capacity to absorb the amino acid glycine but took up amino acid N, NH 4 ϩ , and NO 3 Ϫ in proportion to their availability in the soil. At the site with the highest gross fluxes of N, nearly all the N in amino acids was mineralized, and fine roots assimilated inorganic N much more rapidly than amino acid N. At the two sites with slower rates of gross amino acid production, the pool of free amino acids was larger, and fine roots assimilated amino acid N almost as fast as inorganic N. This study demonstrates that amino acids are an important component of the N cycle in temperate forests.
We investigated how conversion from conventional agriculture to organic management affected the structure and biogeochemical function of soil microbial communities. We hypothesized the following. (1) Changing agricultural management practices will alter soil microbial community structure driven by increasing microbial diversity in organic management. (2) Organically managed soil microbial communities will mineralize more N and will also mineralize more N in response to substrate addition than conventionally managed soil communities. (3) Microbial communities under organic management will be more efficient and respire less added C. Soils from organically and conventionally managed agroecosystems were incubated with and without glucose ( 13 C) additions at constant soil moisture. We extracted soil genomic DNA before and after incubation for TRFLP community fingerprinting of soil bacteria and fungi. We measured soil C and N pools before and after incubation, and we tracked total C respired and N mineralized at several points during the incubation. Twenty years of organic management altered soil bacterial and fungal community structure compared to continuous conventional management with the bacterial differences caused primarily by a large increase in diversity. Organically managed soils mineralized twice as much NO3 − as conventionally managed ones (44 vs. 23 μg N/g soil, respectively) and increased mineralization when labile C was added. There was no difference in respiration, but organically managed soils had larger pools of C suggesting greater efficiency in terms of respiration per unit soil C. These results indicate that the organic management induced a change in community composition resulting in a more diverse community with enhanced activity towards labile substrates and greater capacity to mineralize N.2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.