Disorders of sexual development (DSD), ranging in severity from genital abnormalities to complete sex reversal, are among the most common human birth defects with incidence rates reaching almost 3%. Although causative alterations in key genes controlling gonad development have been identified, the majority of DSD cases remain unexplained. To improve the diagnosis, we screened 116 children born with idiopathic DSD using a clinically validated array-based comparative genomic hybridization platform. 8951 controls without urogenital defects were used to compare with our cohort of affected patients. Clinically relevant imbalances were found in 21.5% of the analyzed patients. Most anomalies (74.2%) evaded detection by the routinely ordered karyotype and were scattered across the genome in gene-enriched subtelomeric loci. Among these defects, confirmed de novo duplication and deletion events were noted on 1p36.33, 9p24.3 and 19q12-q13.11 for ambiguous genitalia, 10p14 and Xq28 for cryptorchidism and 12p13 and 16p11.2 for hypospadias. These variants were significantly associated with genitourinary defects (P = 6.08×10−12). The causality of defects observed in 5p15.3, 9p24.3, 22q12.1 and Xq28 was supported by the presence of overlapping chromosomal rearrangements in several unrelated patients. In addition to known gonad determining genes including SRY and DMRT1, novel candidate genes such as FGFR2, KANK1, ADCY2 and ZEB2 were encompassed. The identification of risk germline rearrangements for urogenital birth defects may impact diagnosis and genetic counseling and contribute to the elucidation of the molecular mechanisms underlying the pathogenesis of human sexual development.
Mutations of the insulin-like 3 (INSL3) hormone or its receptor RXFP2 cause intraabdominal cryptorchidism in male mice. Specific RXFP2 expression in mouse gubernacula was detected at embryonic day 14.5 (E14.5) and markedly increased after birth in the developing cremaster muscle, as well as in the epididymis, testicular Leydig and germ cells. INSL3 treatment stimulated cell proliferation of embryonic gubernacular and Leydig cells implicating active INSL3-mediated signaling. The transcription factor SOX9, a known male sex determination factor, up-regulated the activity of the RXFP2 promoter. INSL3 is sufficient to direct the first transabdominal phase of testicular descent in the absence of hypothalamic-pituitary-gonadal axis signaling or Hoxa10 but their presence is important for inguinoscrotal testicular descent. Similarly, conditional ablation of the androgen receptor gene in gubernacular cells resulted in disruption of inguinoscrotal descent. We performed mutation screening of INSL3 and RXFP2 in human patients with cryptorchidism and control subjects from different populations in Europe and USA. Several missense mutations were described in both the INSL3 and RXFP2 genes. A novel V39G INSL3 mutation in a patient with cryptorchidism was identified, however the functional analysis of the mutant peptide did not reveal compromised function. In more than 2000 patients and controls analyzed to date the T222P RXFP2 mutation is the only one strongly associated with the mutant phenotype. The T222P mutant receptor transfected into 293T cells had severely decreased cell membrane expression, providing the basis for the functional deficiency of this mutation.
Background Non-attendance at paediatric urology outpatient appointments results in the patient's failure to receive medical care and wastes health care resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.