We consider the use of AI techniques to expand the coverage, access, and equity of urban data. We aim to enable holistic research on city dynamics, steering AI research attention away from profit-oriented, societally harmful applications (e.g., facial recognition) and toward foundational questions in mobility, participatory governance, and justice. By making available high-quality, multi-variate, cross-scale data for research, we aim to link the macrostudy of cities as complex systems with the reductionist view of cities as an assembly of independent prediction tasks. We identify four research areas in AI for cities as key enablers: interpolation and extrapolation of spatiotemporal data, using NLP techniques to model speech- and text-intensive governance activities, exploiting ontology modeling in learning tasks, and understanding the interaction of fairness and interpretability in sensitive contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.