Abstract-Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.
The reflectarray has significant promise in applications requiring high-gain, low-profile reflectors. Recent advances in tuning technology have raised the possibility of realizing electronically tunable reflectarrays, which can dynamically adjust their radiation patterns. This paper presents an electronically tunable reflectarray based on elements tuned using varactor diodes. Modeling approaches based on an equivalent circuit representation and computational electromagnetics simulations are presented. Both techniques accurately predict the scattering characteristics of the unit cell as compared to experimental measurements. The development of a unit cell with over 320 of phase agility at 5.5 GHz is discussed. Finally, a 70-element electronically tunable reflectarray prototype operating at 5.8 GHz is presented. Radiation pattern measurements with the reflectarray demonstrate its dynamic beam-forming characteristics. Measurements of the gain of the reflectarray correlate well with theoretical expectations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.