White clover (Trifolium repens) is integral to mixed pastures in New Zealand and temperate agriculture globally. It provides quality feed and a sustainable source of plant-available nitrogen (N) via N-fixation through symbiosis with soil-dwelling Rhizobium bacteria. Improvement of N-fixation in white clover is a route to enhancing sustainability of temperate pasture production. Focussing on seedling growth critical for crop establishment and performance, a population of 120 half-sibling white clover families was assessed with either N-supplementation or N-fixation via inoculation with a commercial Rhizobium strain (TA1). Quantitative genetic analysis identified significant (p < 0.05) family additive genetic variance for Shoot and Root Dry Matter (DM) and Symbiotic Potential (SP), and Root to Shoot ratio. Estimated narrow-sense heritabilities for above-ground symbiotic traits were moderate (0.24–0.33), and the strong (r ≥ 0.97) genetic correlation between Shoot and Root DM indicated strong pleiotropy or close linkage. The moderate (r = 0.47) phenotypic correlation between Shoot DM under symbiosis vs. under N-supplementation suggested plant growth with mineral-N was not a strong predictor of symbiotic performance. At 5% among-family selection pressure, predicted genetic gains per selection cycle of 19 and 17% for symbiotic traits Shoot DM and Shoot SP, respectively, highlighted opportunities for improved early seedling establishment and growth under symbiosis. Single and multi-trait selection methods, including a Smith-Hazel index focussing on an ideotype of high Shoot DM and Shoot SP, showed commonality of top-ranked families among traits. This study provides a platform for proof-of-concept crosses to breed for enhanced seedling growth under Rhizobium symbiosis and is informative for other legume crops.
Tan spot, caused by Pyrenophora tritici-repentis (Ptr), is an important disease of wheat worldwide, and an emerging issue in New Zealand. The pathogen produces host-specific toxins which interact with the wheat host sensitivity loci. Identification of the prevalence of the toxin encoding genes in the local population, and the susceptibility of commonly grown wheat cultivars to Ptr will aid selection of wheat cultivars to reduce disease risk. Twelve single spore isolates collected from wheat-growing areas of the South Island of New Zealand representing the P. tritici-repentis population were characterised for the Ptr ToxA and ToxB genes, ToxA and ToxB, respectively, using two gene specific primers. The susceptibility of 10 wheat cultivars to P. tritici-repentis was determined in a glasshouse experiment by inoculating young plants with a mixed-isolate spore inoculum. All 12 New Zealand P. tritici-repentis isolates were positive for the ToxA gene but none were positive for the ToxB gene. Tan spot lesions developed on all inoculated 10 wheat cultivars, with cultivars ‘Empress’ and ‘Duchess’ being the least susceptible and ‘Discovery’, ‘Reliance’ and ‘Saracen’ the most susceptible cultivars to infection by the mixed-isolate spore inoculum used. The results indicated that the cultivars ‘Empress’ and ‘Duchess’ may possess a level of tolerance to P. tritici-repentis and would, therefore, be recommended for cultivation in regions with high tan spot incidence.
Tan spot of wheat is caused by the fungus Pyrenophora triticirepentis (Ptr) with reported incidence in New Zealand increasing in recent years Lesions characteristic of Ptr infection being oval tan spots surrounded by a chlorotic halo were observed on wheat leaves in 15 different wheat paddocks throughout the South Island in the 201314 season Fungal isolates recovered from these lesions on potato dextrose agar produced greygreen fluffy mycelium characteristic of Ptr Speciesspecific PCR using published primers (PtrUniqueF2/ PtrUniqueR2) generated a PCR product of 490 bp diagnostic of Ptr Sequencing of the rDNA and 946;tubulin gene regions confirmed the identification Ptr was found to be widely distributed throughout the wheat growing areas in the South Island from Southland to North Canterbury A postharvest farmer questionnaire was also undertaken Questionnaire answers revealed that continuous sowing of untreated wheat seed conservative tillage and low rate applications of fungicides may have exacerbated the severity of tan spot outbreaks during the 201314 season Further work to identify susceptible wheat cultivars and sensitivity to fungicides is currently under way
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.