Introductory Paragraph Rod-shaped bacteria grow by adding material into their cell wall via the action of two spatially distinct enzymatic systems: The Rod complex moves around the cell circumference, while class A penicillin-binding proteins do not. To understand how the combined action of these two systems defines bacterial dimensions, we examined how each affects the growth and width of Bacillus subtilis, as well as the mechanical anisotropy and orientation of material within their sacculi. Rod width is not determined by MreB, rather it depends on the balance between the systems: The Rod complex reduces diameter, while aPBPs increase it. Increased Rod complex activity correlates with an increased density of directional MreB filaments and a greater fraction of directional PBP2a enzymes. This increased circumferential synthesis increases the relative amount of oriented material within the sacculi, making them more resistant to stretching across their width, thereby reinforcing rod shape. Together, these experiments explain how the combined action of the two main cell wall synthetic systems builds and maintains rods of different widths. Escherichia coli Rod mutants also show the same correlation between width and directional MreB filament density, suggesting this model may be generalizable to bacteria that elongate via the Rod complex.
HIV-1-infected persons with HLA-B27 and -B57 alleles commonly remain healthy for decades without antiretroviral therapy. Properties of CD8+ T cells restricted by these alleles considered to confer disease protection in these individuals are elusive but important to understand and potentially elicit by vaccination. To address this, we compared CD8+ T cell function induced by HIV-1 immunogens and natural infection using polychromatic flow cytometry. HIV-1-specific CD8+ T cells from all four uninfected immunized and 21 infected subjects secreted IFN-γ and TNF-α. However, CD8+ T cells induced by vaccination and primary infection, but not chronic infection, proliferated to their cognate epitopes. Notably, B27- and B57-restricted CD8+ T cells from nonprogressors exhibited greater expansion than those restricted by other alleles. Hence, CD8+ T cells restricted by certain protective alleles can resist replicative defects, which permits expansion and antiviral effector activities. Our findings suggest that the capacity to maintain CD8+ T cell proliferation, regardless of MHC-restriction, may serve as an important correlate of disease protection in the event of infection following vaccination.
The widespread use of antibiotics has placed bacterial pathogens under intense pressure to evolve new survival mechanisms. Genomic analysis of 51,229 Mycobacterium tuberculosis ( Mtb ) clinical isolates has identified an essential transcriptional regulator, Rv1830 , herein called resR for resilience regulator, as a frequent target of positive (adaptive) selection. resR mutants do not show canonical drug resistance or drug tolerance but instead shorten the post-antibiotic effect, meaning that they enable Mtb to resume growth after drug exposure substantially faster than wild-type strains. We refer to this phenotype as antibiotic resilience. ResR acts in a regulatory cascade with other transcription factors controlling cell growth and division, which are also under positive selection in clinical isolates of Mtb . Mutations of these genes are associated with treatment failure and the acquisition of canonical drug resistance.
Natural killer (NK) cells are inhibited by specific allotypes of class I major histocompatibility complex ligands recognized by polymorphic inhibitory receptors (e.g., NKIR1 and NKIR2). NK1-and NK2-specific clones recognize two groups of HLA-C allotypes that are distinguished by a dimorphism at residue 80 in the ␣1 helix (␣Lys-80 and ␣Asn-80, respectively). ''Empty'' HLA-Cw7 expressed in peptide transporter-deficient cells and HLA-Cw7 loaded with several peptides each functioned as inhibitory ligands for NK2 lines and clones. However, loading of HLA-Cw7 with two other peptides derived from glutamic acid decarboxylase or coxsackie virus (each of which has been associated with autoimmune diabetes mellitus) abrogated this inhibitory recognition. Both peptides contained Lys at P8 of the epitope. Substitution of P8 with Ala or two other basic amino acids, His and Arg, resulted in peptides that were inhibitory, as were peptides with P8 Val, Glu, or Asn. The manner in which a Lys at P8 might affect recognition is discussed, together with a hypothesis for a novel mechanism by which an autoimmune disease might be initiated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.