The COVID-19 pandemic has affected all individuals across the globe in some way. Despite large numbers of reported seroprevalence studies, there remains a limited understanding of how the magnitude and epitope utilization of the humoral immune response to SARS-CoV-2 viral anti-gens varies within populations following natural infection. Here, we designed a quantitative, multi-epitope protein microarray comprising various nucleocapsid protein structural motifs, including two structural domains and three intrinsically disordered regions. Quantitative data from the microarray provided complete differentiation between cases and pre-pandemic controls (100% sensitivity and specificity) in a case-control cohort (n = 100). We then assessed the influence of disease severity, age, and ethnicity on the strength and breadth of the humoral response in a multi-ethnic cohort (n = 138). As expected, patients with severe disease showed significantly higher antibody titers and interestingly also had significantly broader epitope coverage. A significant increase in antibody titer and epitope coverage was observed with increasing age, in both mild and severe disease, which is promising for vaccine efficacy in older individuals. Additionally, we observed significant differences in the breadth and strength of the humoral immune response in relation to ethnicity, which may reflect differences in genetic and lifestyle factors. Furthermore, our data enabled localization of the immuno-dominant epitope to the C-terminal structural domain of the viral nucleocapsid protein in two independent cohorts. Overall, we have designed, validated, and tested an advanced serological assay that enables accurate quantitation of the humoral response post natural infection and that has revealed unexpected differences in the magnitude and epitope utilization within a population.
Pathogenic mycobacteria, such as Mycobacterium tuberculosis, modulate the host immune system to evade clearance and promote long-term persistence, resulting in disease progression or latent infection. Understanding the mechanisms pathogenic mycobacteria use to escape elimination by the host immune system is critical to better understanding the molecular mechanisms of mycobacterial infection. Protein kinase G (PknG) in pathogenic mycobacteria has been shown to play an important role in avoiding clearance by macrophages through blocking phagosome-lysosome fusion; however, the exact mechanism is not completely understood. Here, to further investigate the role of mycobacterial PknG during early events of macrophage infection, RAW 264.7 macrophage cell lines were infected with M. bovis BCG wild-type and PknG knock-out mutant strains. After proteolysis, phosphopeptides were enriched via TiO2 columns and subjected to LC-MS/MS to identify differentially phosphorylated peptides between the wild-type and PknG mutant infected macrophages. A total of 1401 phosphosites on 914 unique proteins were identified. Following phosphoproteome normalisation and differential expression analysis, a total of 149 phosphosites were differentially phosphorylated in the wild-type infected RAW 264.7 macrophages versus the PknG knock-out mutant. A subset of 95 phosphosites was differentially up-regulated in the presence of PknG. Functional analysis of our data revealed that PknG kinase activity reprograms normal macrophage function through interfering with host cytoskeletal organisation, spliceosomal machinery, translational initiation, and programmed cell death. Differentially phosphorylated proteins in this study serve as a foundation for further validation and PknG host substrate assignment.ImportanceTuberculosis (TB) remains one of the leading causes of death from infection worldwide, due to the ability of Mycobacterium tuberculosis (Mtb) to survive and replicate within the host, establishing reservoirs of live bacteria that promote persistence and recurrence of disease. Understanding the mechanisms that Mtb uses to evade the host immune system is thus a major goal in the TB field. Protein kinase G is thought to play an important role in Mtb avoiding clearance by the host through disruption of macrophage function, but the underlying molecular mechanisms of this are not well understood. Here, our new phosphoproteomic data reveals that mycobacterial PknG substantially reprograms normal macrophage function through extensive PknG-mediated post-translational control of critical host cellular processes. These novel findings therefore considerably increase our knowledge of mycobacterial pathogenicity, including specific host cellular pathways that might be re-activatable through host-directed therapy, thereby restoring macrophage ability to eliminate Mtb.
The spread of coronavirus disease 2019 (COVID‐19) viral pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has become a worldwide pandemic claiming several thousands of lives worldwide. During this pandemic, several studies reported the use of COVID‐19 convalescent plasma (CCP) from recovered patients to treat severely or critically ill patients. Although this historical and empirical treatment holds immense potential as a first line of response against eventual future unforeseen viral epidemics, there are several concerns regarding the efficacy and safety of this approach. This critical review aims to pinpoint the possible role of mass spectrometry‐based analysis in the identification of unique molecular component proteins, peptides, and metabolites of CCP that explains the therapeutic mechanism of action against COVID‐19. Additionally, the text critically reviews the potential application of mass spectrometry approaches in the search for novel plasma biomarkers that may enable a rapid and accurate assessment of the safety and efficacy of CCP. Considering the relative low‐cost value involved in the CCP therapy, this proposed line of research represents a tangible scientific challenge that will be translated into clinical practice and help save several thousand lives around the world, specifically in low‐ and middle‐income countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.