COVID-19 is unquestionably one of the most hazardous health issues of our century, and it is a significant cause of mortality for both men and women throughout the globe. Even with the most advanced pharmacological and technical innovations, cancer oncologists, and biologists still have a substantial problem treating COVID-19. For patients with COVID-19, it is critical to offer initial, precise, and effective indicative procedures to increase their survival and minimize morbidity and mortality, which is currently lacking. A COVID-19 detection method has been presented in this paper for the initial identification of COVID-19 hazard factors. Features from accelerated segment test (FAST), a robust feature was used to extract features in this suggested method. The experiments show that it is possible to identify FAST traits efficiently. A consequence was a high success rate (98%) for accuracy performance.
Utilizing deep learning algorithms to differentiate the fingerprints of children can greatly enhance their safety. This advanced technology enables precise identification of individual children, facilitating improved monitoring and tracking of their activities and movements. This can effectively prevent abductions and other forms of harm, while also providing a valuable resource for law enforcement and other organizations responsible for safeguarding children. Furthermore, the use of deep learning algorithms minimizes the potential for errors and enhances the overall accuracy of fingerprint recognition. Overall, implementing this technology has immense potential to significantly improve the safety of children in various settings. Our experiments have demonstrated that deep learning significantly enhances the accuracy of fingerprint recognition for children. The model accurately classified fingerprints with an overall accuracy rate of 93%, surpassing traditional fingerprint recognition techniques by a significant margin. Additionally, it correctly identified individual children's fingerprints with an accuracy rate of 89%, showcasing its ability to distinguish between different sets of fingerprints belonging to different children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.