We present a new improvement in the linear programming technique to derive lower bounds on the information ratio of secret sharing schemes. We obtain non-Shannon-type bounds without using information inequalities explicitly. Our new technique makes it possible to determine the optimal information ratio of linear secret sharing schemes for all access structures on 5 participants and all graph-based access structures on 6 participants. In addition, new lower bounds are presented also for some small matroid ports and, in particular, the optimal information ratios of the linear secret sharing schemes for the ports of the Vamos matroid are determined.
We present a new improvement in the linear programming technique to derive lower bounds on the information ratio of secret sharing schemes. We obtain non-Shannon-type bounds without using information inequalities explicitly. Our new technique makes it possible to determine the optimal information ratio of linear secret sharing schemes for all access structures on 5 participants and all graph-based access structures on 6 participants. In addition, new lower bounds are presented also for some small matroid ports and, in particular, the optimal information ratios of the linear secret sharing schemes for the ports of the Vamos matroid are determined.
Abstract. Beimel and Orlov proved that all information inequalities on four or five variables, together with all information inequalities on more than five variables that are known to date, provide lower bounds on the size of the shares in secret sharing schemes that are at most linear on the number of participants. We present here another negative result about the power of information inequalities in the search for lower bounds in secret sharing. Namely, we prove that all information inequalities on a bounded number of variables only can provide lower bounds that are polynomial on the number of participants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.