We consider the problem of creating assistants that can help agents -often humans -solve novel sequential decision problems, assuming the agent is not able to specify the reward function explicitly to the assistant. Instead of aiming to automate, and act in place of the agent as in current approaches, we give the assistant an advisory role and keep the agent in the loop as the main decision maker. The difficulty is that we must account for potential biases induced by limitations or constraints of the agent which may cause it to seemingly irrationally reject advice. To do this we introduce a novel formalization of assistance that models these biases, allowing the assistant to infer and adapt to them. We then introduce a new method for planning the assistant's advice which can scale to large decision making problems. Finally, we show experimentally that our approach adapts to these agent biases, and results in higher cumulative reward for the agent than automation-based alternatives.
We need to rethink how we assist designers with artificial intelligence (AI). AI should aim to cooperate, not automate, by supporting and leveraging the creativity and problem-solving capabilities of designers. The challenge for such AI is how to infer designers' goals and then help them without being needlessly disruptive. We introduce AI-assisted design, a new framework for creating such AI, built around generative user models, which allow it to infer and adapt to designers' goals, reasoning, and capabilities.
We consider the problem of creating assistants that can help agents solve new sequential decision problems, assuming the agent is not able to specify the reward function explicitly to the assistant. Instead of acting in place of the agent as in current automation-based approaches, we give the assistant an advisory role and keep the agent in the loop as the main decision maker. The difficulty is that we must account for potential biases of the agent which may cause it to seemingly irrationally reject advice. To do this we introduce a novel formalization of assistance that models these biases, allowing the assistant to infer and adapt to them. We then introduce a new method for planning the assistant's actions which can scale to large decision making problems. We show experimentally that our approach adapts to these agent biases, and results in higher cumulative reward for the agent than automation-based alternatives. Lastly, we show that an approach combining advice and automation outperforms advice alone at the cost of losing some safety guarantees.
AI for supporting designers needs to be rethought. It should aim to cooperate, not automate, by supporting and leveraging the creativity and problem-solving of designers. The challenge for such AI is how to infer designers' goals and then help them without being needlessly disruptive. We present AI-assisted design: a framework for creating such AI, built around generative user models which enable reasoning about designers' goals, reasoning, and capabilities.Computer
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.