Increasing evidence suggests that macrophages critically shape brain homeostasis and disease.However, while the pivotal role of parenchymal microglia has gradually emerged, other brain-resident myeloid cells remain elusive. By dissecting border regions and combining single-cell RNA sequencing with high-dimensional cytometry, bulk RNA-sequencing, fate-mapping and microscopy, we reveal the remarkable diversity of non-parenchymal brain macrophages. Border-associated macrophages or BAMs residing in the dura mater, subdural meninges and choroid plexus consisted of distinct subsets that exhibited tissue-specific transcriptional signatures and underwent strong compositional changes during postnatal development. The gene regulatory networks of BAMs were identified and fundamentally differed from those of microglia. Importantly, we identified a unique non-homeostatic microglia-like population residing on the apical surface of the choroid plexus epithelium. Niche accessibility drove BAM ontogeny and determined whether embryonic macrophages were progressively replaced by bone marrow progenitors. Together, our work provides important insights into the biology of brain macrophages and offers a solid framework for future investigations.
Macrophages are highly heterogeneous tissue-resident immune cells that perform a variety of tissue-supportive functions. The current paradigm dictates that intestinal macrophages are continuously replaced by incoming monocytes that acquire a pro-inflammatory or tissue-protective signature. Here, we identify a self-maintaining population of macrophages that arise from both embryonic precursors and adult bone marrow-derived monocytes and persists throughout adulthood. Gene expression and imaging studies of self-maintaining macrophages revealed distinct transcriptional profiles that reflect their unique localization (i.e., closely positioned to blood vessels, submucosal and myenteric plexus, Paneth cells, and Peyer's patches). Depletion of self-maintaining macrophages resulted in morphological abnormalities in the submucosal vasculature and loss of enteric neurons, leading to vascular leakage, impaired secretion, and reduced intestinal motility. These results provide critical insights in intestinal macrophage heterogeneity and demonstrate the strategic role of self-maintaining macrophages in gut homeostasis and intestinal physiology.
Resident tissue macrophages (RTM) can fulfill various tasks during development, homeostasis, inflammation and repair. In the lung, non-alveolar RTM, called interstitial macrophages (IM), importantly contribute to tissue homeostasis but remain little characterized. Here we show, using single-cell RNA-sequencing (scRNA-seq), two phenotypically distinct subpopulations of long-lived monocyte-derived IM, i.e. CD206 + and CD206 − IM, as well as a discrete population of extravasating CD64 + CD16.2 + monocytes. CD206 + IM are peribronchial self-maintaining RTM that constitutively produce high levels of chemokines and immunosuppressive cytokines. Conversely, CD206 − IM preferentially populate the alveolar interstitium and exhibit features of antigen-presenting cells. In addition, our data support that CD64 + CD16.2 + monocytes arise from intravascular Ly-6C lo patrolling monocytes that enter the tissue at steady-state to become putative precursors of CD206 − IM. This study expands our knowledge about the complexity of lung IM and reveals an ontogenic pathway for one IM subset, an important step for elaborating future macrophage-targeted therapies.
Dementia is a rapidly rising global health crisis that silently disables families and ends lives and livelihoods around the world. To date, however, no early biomarkers or effective therapies exist. It is now clear that brain microglia are more than mere bystanders or amyloid phagocytes; they can act as governors of neuronal function and homeostasis in the adult brain. Here, we highlight the fundamental role of microglia as tissue-resident macrophages in neuronal health. Then, we suggest how chronic impairment in microglia-neuron cross-talk may secure the permanence of the failure of synaptic and neuronal function and health in Alzheimer’s and Parkinson’s diseases. Understanding how to assess and modulate microglia-neuron interactions critical for brain health will be key to developing effective therapies for dementia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.