IntroductionExecutive functions (EFs) training interventions aimed at ADHD-symptom reduction have yielded mixed results. Generally, these interventions focus on training a single cognitive domain (e.g., working memory [WM], inhibition, or cognitive-flexibility). However, evidence suggests that most children with ADHD show deficits on multiple EFs, and that these EFs are largely related to different brain regions. Therefore, training multiple EFs might be a potentially more effective strategy to reduce EF-related ADHD symptoms.MethodsEighty-nine children with a clinical diagnosis of ADHD (aged 8–12) were randomized to either a full-active-condition where visuospatial WM, inhibition and cognitive-flexibility were trained, a partially-active-condition where inhibition and cognitive-flexibility were trained and the WM-training task was presented in placebo-mode, or to a full placebo-condition. Short-term and long-term (3-months) effects of this gamified, 25-session, home-based computer-training were evaluated on multiple outcome domains.ResultsDuring training compliance was high (only 3% failed to meet compliance criteria). After training, only children in the full-active condition showed improvement on measures of visuospatial short-term-memory (STM) and WM. Inhibitory performance and interference control only improved in the full-active- and the partially-active condition. No Treatment-condition x Time interactions were found for cognitive-flexibility, verbal WM, complex-reasoning, nor for any parent-, teacher-, or child-rated ADHD behaviors, EF-behaviors, motivational behaviors, or general problem behaviors. Nonetheless, almost all measures showed main Time-effects, including the teacher-ratings.ConclusionsImprovements on inhibition and visuospatial STM and WM were specifically related to the type of treatment received. However, transfer to untrained EFs and behaviors was mostly nonspecific (i.e., only interference control improved exclusively in the two EF training conditions). As such, in this multiple EF-training, mainly nonspecific treatment factors – as opposed to the specific effects of training EFs—seem related to far transfer effects found on EF and behavior.Trial Registrationtrialregister.nl NTR2728. Registry name: improving executive functioning in children with ADHD: training executive functions within the context of a computer game; registry number: NTR2728.
This study examined the benefits of adding game elements to standard computerized working memory (WM) training. Specifically, it examined whether game elements would enhance motivation and training performance of children with ADHD, and whether it would improve training efficacy. A total of 51 children with ADHD aged between 7 and 12 years were randomly assigned to WM training in a gaming format or to regular WM training that was not in a gaming format. Both groups completed three weekly sessions of WM training. Children using the game version of the WM training showed greater motivation (i.e., more time training), better training performance (i.e., more sequences reproduced and fewer errors), and better WM (i.e., higher scores on a WM task) at post-training than children using the regular WM training. Results are discussed in terms of executive functions and reinforcement models of ADHD. It is concluded that WM training with game elements significantly improves the motivation, training performance, and working memory of children with ADHD. The findings of this study are encouraging and may have wide-reaching practical implications in terms of the role of game elements in the design and implementation of new intervention efforts for children with ADHD.
Visual-spatial Working Memory (WM) is the most impaired executive function in children with AttentionDeficit/Hyperactivity Disorder (ADHD). Some suggest that deficits in executive functioning are caused by motivational deficits. However, there are no studies that investigate the effects of motivation on the visual-spatial WM of children with-and without ADHD. Studies examining this in executive functions other than WM, show inconsistent results. These inconsistencies may be related to differences in the reinforcement used. The effects of different reinforcers on WM performance were investigated in 30 children with ADHD and 31 non-ADHD controls. A visual-spatial WM task was administered in four reinforcement conditions: Feedback-only, 1 euro, 10 euros, and a computer-game version of the task. In the Feedback-only condition, children with ADHD performed worse on the WM measure than controls. Although incentives significantly improved the WM performance of children with ADHD, even the strongest incentives (10 euros and Gaming) were unable to normalize their performance. Feedback-only provided sufficient reinforcement for controls to reach optimal performance, while children with ADHD required extra reinforcement. Only children with ADHD showed a decrease in performance over time. Importantly, the strongest incentives (10 euros and Gaming) normalized persistence of performance in these children, whereas 1 euro had no such effect. Both executive and motivational deficits give rise to visual-spatial WM deficits in ADHD. Problems with taskpersistence in ADHD result from motivational deficits. In ADHD-reinforcement studies and clinical practice (e.g., assessment), reinforcement intensity can be a confounding factor and should be taken into account. Gaming can be a cost-effective way to maximize performance in ADHD.
Deficits in Working Memory (WM) are related to symptoms of Attention-Deficit/Hyperactivity Disorder (ADHD). In children with ADHD visuospatial WM is most impaired. WM is composed of Short-Term Memory (STM) and a Central Executive (CE). Therefore, deficits in either or both STM and the CE may account for WM impairments in children with ADHD. WM-component studies investigating this find deficits in both STM and the CE. However, recent studies show that not only cognitive deficits, but also motivational deficits give rise to the aberrant WM performance of children with ADHD. To date, the influence of these motivational deficits on the components of WM has not been investigated. This study examined the effects of a standard (feedback-only) and a high level of reinforcement (feedback + 10 euros) on the visuospatial WM-, visuospatial STM-, and the CE performance of 86 children with ADHD and 62 typically-developing controls. With standard reinforcement the STM, CE, and WM performance of children with ADHD was worse than that of controls. High reinforcement improved STM and WM performance more in children with ADHD than in controls, but was unable to normalize their performance. High reinforcement did not appear to improve the CE-related performance of children with ADHD and controls. Motivational deficits have a detrimental effect on both the visuospatial WM performance and the STM performance of children with ADHD. Aside from motivational deficits, both the visuospatial STM and the CE of children with ADHD are impaired, and give rise to their deficits in visuospatial WM.
In the area of childhood attention-deficit hyperactivity disorder, there is an urgent need for new, innovative, and child-focused treatments. A computerized executive functioning training with game elements aimed at enhancing self-control was developed. The first results are promising, and the next steps involve replication with larger samples, evaluating transfer of training effects to daily life, and enhancing motivation through more gaming elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.