Magnetic reconnection can power spectacular high-energy astrophysical phenomena by producing non-thermal energy distributions in highly magnetized regions around compact objects. By means of two-dimensional fully kinetic particle-in-cell (PIC) simulations we investigate relativistic collisionless plasmoid-mediated reconnection in magnetically dominated pair plasmas with and without guide field. In X-points, where diverging flows result in a non-diagonal thermal pressure tensor, a finite residence time for particles gives rise to a localized collisionless effective resistivity. Here, for the first time for relativistic reconnection in a fully developed plasmoid chain we identify the mechanisms driving the non-ideal electric field using a full Ohm's law by means of a statistical analysis based on our PIC simulations. We show that the non-ideal electric field is predominantly driven by gradients of nongyrotropic thermal pressures. We propose a kinetic physics motivated non-uniform effective resistivity model, which is negligible on global scales and becomes significant only locally in X-points, that captures the properties of collisionless reconnection with the aim of mimicking its essentials in non-ideal magnetohydrodynamic descriptions. This effective resistivity model provides a viable opportunity to design physically grounded global models for reconnection-powered high-energy emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.