With the Stark deceleration technique, packets of molecules with a tunable velocity, a narrow velocity spread, and a high state purity can be produced. These tamed molecular beams find applications in high resolution spectroscopy, cold molecule trapping, and controlled scattering experiments. The quality and purity of the packets of molecules emerging from the decelerator critically depend on the specifications of the decelerator, but also on the characteristics of the molecular beam pulse with which the decelerator is loaded. We consider three frequently used molecular beam sources, and discuss their suitability for molecular beam deceleration experiments, in particular with the application in crossed beam scattering in mind. The performance of two valves in particular, the Nijmegen Pulsed Valve and the Jordan Valve, is illustrated by decelerating ND 3 molecules in a 2.6 meter-long Stark decelerator. We describe a protocol to characterize the valve, and to optimally load the pulse of molecules into the decelerator. We characterize the valves regarding opening time duration, optimal valve-to-skimmer distance, mean velocity, velocity spread, state purity, and relative intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.