By combination of particle image velocimetry and live cell imaging in an acoustically driven microfluidic chamber, we study shear and cell density dependent adhesion. We find excellent agreement with simulations considering pure geometrical effects.
On the way towards neuronal stimulation and signalling, standing surface acoustic waves (SSAW) have become a widely used technique to create well-defined networks of living cells in vitro during the past years. An overall challenge in this research area is to maintain cell viability in long-term treatments long enough to observe changes in cellular functions. To close this gap, we here investigate SSAW-directed neurite outgrowth of B35 (neuroblastoma) cells in microchannels on LiNbO3 chips, employing one-dimensional pulsed and continuous MHz-order SSAW signals at different intensities for up to 40 hours. To increase the efficiency of future investigations, we explore the limits of applicable SSAW parameters by quantifying their viability and proliferation behaviour in this long-term setup. While cell viability is impaired for power levels above 15 dBm (32 mW), our investigations on SSAW-directed neurite outgrowth reveal a significant increase of neurites growing in preferential directions by up to 31.3 % after 30 hours of SSAW treatment.
On the way towards neuronal stimulation and signalling, standing surface acoustic waves (SSAW) have become a widely used technique to create well-defined networks of living cells in vitro during the past years. An overall challenge in this research area is to maintain cell viability in long-term treatments long enough to observe changes in cellular functions. To close this gap, we here investigate SSAW-directed neurite outgrowth of B35 (neuroblastoma) cells in microchannels on LiNbO3 chips, employing one-dimensional pulsed and continuous MHz-order SSAW signals at different intensities for up to 40 hours. To increase the efficiency of future investigations, we explore the limits of applicable SSAW parameters by quantifying their viability and proliferation behaviour in this long-term setup. While cell viability is impaired for power levels above 15 dBm, our investigations on SSAW-directed neurite outgrowth reveal a significant increase of neurites growing in preferential directions by up to 31.3 % after 30 hours of SSAW treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.