Considerable interest exists in modeling and forecasting the effects of autonomous vehicles on travel behavior and transportation network performance. In an autonomous vehicle (AV) future, individuals may privately own such vehicles, use mobility-on-demand services provided by transportation network companies that operate shared AV fleets, or adopt a combination of those two options. This paper presents a comprehensive model system of AV adoption and use. A generalized, heterogeneous data model system was estimated with data collected as part of the Puget Sound, Washington, Regional Travel Study. The results showed that lifestyle factors play an important role in shaping AV usage. Younger, urban residents who are more educated and technologically savvy are more likely to be early adopters of AV technologies than are older, suburban and rural individuals, a fact that favors a sharing-based service model over private ownership. Models such as the one presented in this paper can be used to predict the adoption of AV technologies, and such predictions will, in turn, help forecast the effects of AVs under alternative future scenarios.
Results from a mobility survey from Chile during the COVID-19 pandemic show a decrease of 44% of trips in Santiago, with metro (55%), ride-hailing (51%), and bus (45%) presenting the highest reduction. Modes with the lowest reduction are motorcycle (28%), auto (34%), and walking (39%). While 77% of workers from low-income households had to go out and work, 80% of workers from high-income households worked from home. Other important factors that correlate with teleworking are gender, educational level, employment status, and occupation. Regarding the number of trips for purposes other than work, significant factors are gender, age, and employment status.
This paper formulates a multidimensional choice model system that is capable of handling multiple nominal variables, multiple count dependent variables, and multiple continuous dependent variables.The system takes the form of a treatment-outcome selection system with multiple treatments and multiple outcome variables. The Maximum Approximate Composite Marginal Likelihood (MACML) approach is proposed in estimation, and a simulation experiment is undertaken to evaluate the ability of the MACML method to recover the model parameters in such integrated systems. These experiments show that our estimation approach recovers the underlying parameters very well and is efficient from an econometric perspective. The parametric model system proposed in the paper is applied to an analysis of household-level decisions on residential location, motorized vehicle ownership, the number of daily motorized tours, the number of daily non-motorized tours, and the average distance for the motorized tours. The empirical analysis uses the NHTS 2009 data from the San Francisco Bay area. Model estimation results show that the choice dimensions considered in this paper are inter-related, both through direct observed structural relationships and through correlations across unobserved factors (error terms) affecting multiple choice dimensions.The significant presence of self-selection effects (endogeneity) suggests that modeling the various choice processes in an independent sequence of models is not reflective of the true relationships that exist across these choice dimensions, as also reinforced through the computation of treatment effects in the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.