Manufactured fibers derived from natural origins include viscose rayon, azlon, and polylactic acid (PLA). A 2-year study was conducted to document any changes these fibers undergo as a result of exposure to various environmental conditions. Fabric swatches representing each fiber type were exposed to freshwater, saltwater, heat, cold, ultraviolet light, or composter conditions. Fibers from the swatches were periodically analyzed using polarized light microscopy and Fourier transform infrared microspectroscopy. Fiber solubility and melting-point behavior were measured every 6 months. Except for the complete degradation of viscose rayon in the composter, saltwater, and freshwater environs, no changes in the optical properties, infrared spectra, solubility, or melting points of the remaining fibers in any of the environments were observed. However, microscopic morphological changes were observed in fibers from two azlon swatches submerged in freshwater and saltwater, two PLA swatches exposed to ultraviolet light, and two viscose rayon swatches exposed to ultraviolet light.
Little is known about changes in dyed man-made fibers caused by environmental conditions, especially exposure to ultraviolet (UV) radiation over long periods of time. Even less known are the deviations of the spectral curves collected from these samples using UV-visible microspectrophotometry (UV-Vis MSP) from the spectral curves collected from unexposed fiber samples. Spectral alterations, however, may derive from undesired causes inherent to the operation of the instrument or the samples themselves. Hence, the primary goal of this research was to study the effect of UV radiation on various combinations of man-made fiber types, color, and dye types. A UV radiation box was constructed as a controlled (indoor) environment and was compared to a dedicated (outdoor) natural exposure facility in Buckeye, AZ. In both settings, the fiber samples were exposed up to 32 weeks and collected and analyzed at intervals of 8 weeks. The undesired causes of UV exposure of induced photobleaching inherent to the xenon source of the spectrophotometer and the latent polarization of the selected fiber samples as a function of their orientation on the stage of the microscope were also evaluated. Although issues due to latent polarization from the samples were not identified, induced photobleaching was observed within 8 seconds of exposure to the xenon source in a few instances. In this study, different types of spectral alterations were observed, which occurred both in the visible and the UV spectral regions. These alterations were the same as observed in the indoor setting, the outdoor setting, and the instrument-induced photobleaching study, although their times of occurrence differed. This study focused on technical aspects related to the proper use of UV-Vis MSP to the analysis of textile fibers exposed to UV radiation. It has led to the formulation of recommended measures that aim at minimizing the risks of spectral alterations resulting from causes other than the environmental UV exposure of interest.
The Microscope is publishing selected monographs from McCrone Research Institute’s recently completed research, New Microcrystal Tests for Controlled Drugs, Diverted Pharmaceuticals, and Bath Salts (Synthetic Cathinones), which contains newly developed microcrystal tests and reagents with 9 additional drugs: alprazolam, butylone, mephedrone, methylone, MDPV, 4-MEC, alpha-PVP, tramadol, and zolpidem. This issue includes the last four monographs for the following drugs/reagents: • Tramadol/gold bromide with acetic acid and sulphuric acid • Tramadol/gold bromide with hydrochloric acid • Zolpidem/gold chloride with hydrochloric acid • Zolpidem/platinum bromide with sulfuric acid
The Microscope is publishing selected monographs from McCrone Research Institute’s recently completed research, New Microcrystal Tests for Controlled Drugs, Diverted Pharmaceuticals, and Bath Salts (Synthetic Cathinones), which contains newly developed microcrystal tests and reagents with 9 additional drugs: alprazolam, butylone, mephedrone, methylone, MDPV, 4-MEC, alpha-PVP, tramadol, and zolpidem. This issue includes the monographs for the following drugs/reagents: - Alpha-PVP/palladium chloride with hydrochloric acid and phosphoric acid - Alpha-PVP/potassium ferrocyanide with hydrochloric acid
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.