Purpose The number of candidates for a total hip arthroplasty (THA) is steadily increasing, while the average patient age is decreasing for primary THA. The rise in THA is mainly due to excellent clinical outcomes and the extended longevity of modern implants. Short stem arthroplasties with predominantly metaphyseal fixation such as the Metha® stem are suggested for young patients. It is hypothesised that the more physiological load transfer of these devices reduces stress shielding, which in turn may reduce the risk of aseptic loosening. However, patients with femoral deformities often require a deviation of the resection height. To this end, our aim was to evaluate how resection height influences strain patterns in order to characterise possible limits for short stem implantation. Methods Biomechanical testing using ten strain gauges on synthetic bone illustrated the strain patterns of three different resection heights (0, +5 and +10 mm) for the Metha stem. Results The greatest differences in strains were displayed at the "high" (most proximal) resection height (+10 mm) when compared to the non-implanted strain pattern. At the medial calcar, the strain was 143 % for +10 mm, 96 % for +5 mm and 94 % for 0 mm. Overall, discrepancies were less for deeper resections. Conclusions The deeper the resection, the more similar the strain patterns are when compared to a non-implanted synthetic bone. Changes in strain patterns are induced by variation in the varus/valgus positioning of the implant and by different offsets.
Short stem hip arthroplasties with predominantly metaphyseal fixation, such as the METHA® stem (Aesculap, Tuttlingen, Germany), are recommended because they are presumed to allow a more physiologic load transfer and thus a reduction of stress-shielding. However, the hypothesized metaphyseal anchorage associated with the aforementioned benefits still needs to be verified. Therefore, the METHA short stem and the Bicontact® standard stem (Aesculap, Tuttlingen, Germany) were tested biomechanically in synthetic femora while strain gauges monitored their corresponding strain patterns. For the METHA stem, the strains in all tested locations including the region of the calcar (87% of the non-implanted femur) were similar to conditions of synthetic bone without implanted stem. The Bicontact stem showed approximately the level of strain of the non-implanted femur on the lateral and medial aspect in the proximal diaphysis of the femur. On the anterior and posterior aspect of the proximal metaphysis the strains reached averages of 78% and 87% of the non-implanted femur, respectively. This study revealed primary metaphyseal anchorage of the METHA short stem, as opposed to a metaphyseal-diaphyseal anchorage of the Bicontact stem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.