Learning agile skills is one of the main challenges in robotics. To this end, reinforcement learning approaches have achieved impressive results. These methods require explicit task information in terms of a reward function or an expert that can be queried in simulation to provide a target control output, which limits their applicability. In this work, we propose a generative adversarial method for inferring reward functions from partial and potentially physically incompatible demonstrations for successful skill acquirement where reference or expert demonstrations are not easily accessible. Moreover, we show that by using a Wasserstein GAN formulation and transitions from demonstrations with rough and partial information as input, we are able to extract policies that are robust and capable of imitating demonstrated behaviors. Finally, the obtained skills such as a backflip are tested on an agile quadruped robot called Solo 8 and present faithful replication of hand-held human demonstrations.
An implementation of attentional bias is presented for a network model that couples excitatory and inhibitory oscillatory units in a manner that is inspired by the mechanisms that generate cortical gamma oscillations. Attentional biases are implemented as oscillatory coherences between excitatory units that encode the spatial location or features of the target and the pool of inhibitory units. This form of attentional bias is motivated by neurophysiological findings that relate selective attention to spike field coherence. Including also pattern recognition mechanisms, we demonstrate how this implementation of attentional bias leads to selection of an attentional target while suppressing distracters for cases of spatial and feature-based attention. With respect to neurophysiological observations, we argue that the recently found positive correlation between high firing rates and strong gamma locking with attention (Vinck, Womelsdorf, Buffalo, Desimone, & Fries, 2013) may point to an essential mechanism of the brain's attentional selection and suppression processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.