The role of a municipal wastewater treatment plant as a reservoir for bacteria carrying antibiotic resistance plasmids was analysed. Altogether, ninety-seven different multiresistance plasmids were isolated and screened by PCR for the presence of class 1 integron-specific sequences. Twelve of these plasmids were identified to carry integrons. In addition, integron-specific sequences were found on plasmid-DNA preparations from bacteria residing in activated sludge and in the final effluents of the wastewater treatment plant. Sequencing and annotation of the integrons identified nineteen different gene cassette arrays, containing twenty-one different resistance gene cassettes. These cassettes carry genes encoding eight different aminoglycoside-modifying enzymes, seven dihydrofolate reductases, three beta-lactamases, two chloramphenicol resistance proteins and two small exporter proteins. Moreover, new gene cassettes and cassettes with unknown function were identified. Eleven gene cassette combinations are described for the first time. Six integron-associated gene cassette arrays are located on self-transmissible, putative broad-host-range plasmids belonging to the IncP group. Hybridisation analyses, using the integron-specific gene cassette arrays as templates and labelled plasmid-DNA preparations from bacteria of the final effluents as hybridisation probes, revealed that bacteria containing integron-specific sequences on plasmids are released into the environment.
All commonly used local anaesthetics induce neuronal apoptosis in clinically used concentrations. The neurotoxicity correlates with lipid solubility and thus with the conduction blocking potency of the local anaesthetic, but is independent of the chemical class (ester/amide).
The effect of fungal hyphae on the mobilization of soil-dwelling bacteria and their access to hydrophobic phenanthrene in soil was tested in columns containing air-filled agricultural soil. The experimental design included a spatial separation between zones of bacterial inoculation and contamination. Motile Pseudomonas putida PpG7 (NAH7) and fast-growing, hydrophilic Pythium ultimum were used as the model phenanthrene-degrading and vector organisms, respectively. Efficient translocation of strain PpG7 in the range of centimetres in presence of P. ultimum indicated that the fungal mycelia bridged air-filled pores and thereby provided a continuous network of water-paths that enabled bacteria to spread in the soil. Biodegradation of the soil-associated phenanthrene was found only in the presence of the fungal mycelia, hence proving that the fungal network facilitated the access of the bacteria to the contaminant. Our data suggest that the specific stimulation of indigenous fungi is a promising method to mobilize pollutant degrading bacteria and thereby improve soil bioremediation in-situ.
Apoptosis is triggered by concentrations of lidocaine occurring intrathecally after spinal anesthesia, whereas higher concentrations induce necrosis. The data indicate that death receptors are not involved in lidocaine-induced apoptosis. In contrast, the observation that B-cell lymphoma-2 protein overexpression or the lack of caspase 9 abolished apoptosis clearly implicates the intrinsic mitochondrial death pathway in lidocaine-induced apoptosis.
Ketamine at millimolar concentrations induces apoptosis via the mitochondrial pathway, independent of death receptor signalling. At higher concentrations necrosis is the predominant mechanism. Less toxicity of S(+)-ketamine was observed in neuroblastoma cells, but this difference was minor and therefore unlikely to be mediated via the NMDA receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.