The ATP-driven chaperone valosin-containing protein (VCP)/p97 governs critical steps in ubiquitin-dependent protein quality control and intracellular signalling pathways. It cooperates with diverse partner proteins to help process ubiquitin-labelled proteins for recycling or degradation by the proteasome in many cellular contexts. Recent studies have uncovered unexpected cellular functions for p97 in autophagy, endosomal sorting and regulating protein degradation at the outer mitochondrial membrane, and elucidated a role for p97 in key chromatin-associated processes. These findings extend the functional relevance of p97 to lysosomal degradation and reveal a surprising dual role in protecting cells from protein stress and ensuring genome stability during proliferation.
The AAA-ATPase VCP/p97 cooperates with distinct cofactors to process ubiquitinated proteins in different cellular pathways 1–3. VCP missense mutations cause a systemic degenerative disease in humans, but the molecular pathogenesis is unclear 4, 5. We used an unbiased mass spectrometry approach and identified a VCP complex with the UBXD1 cofactor, which binds the plasma membrane protein caveolin-1 (Cav1) and whose formation is specifically disrupted by disease-associated mutations. We show that VCP-UBXD1 targets mono-ubiquitinated Cav1 in SDS-resistant high molecular weight complexes on endosomes, which are en route to degradation in endolysosomes 6. Expression of VCP mutant proteins, chemical inhibition of VCP, or siRNA-mediated depletion of UBXD1 leads to a block of Cav1 transport at the limiting membrane of enlarged endosomes in cultured cells. In patient muscle, muscle-specific Caveolin-3 (Cav3) accumulates in sarcoplasmic pools and specifically delocalises from the sarcolemma. These results extend the cellular functions of VCP to mediating sorting of ubiquitinated cargo in the endocytic pathway and suggest that impaired trafficking of caveolin may contribute to the pathogenesis in individuals with VCP mutations.
Autophagy is a diverse family of processes that transport cytoplasm and organelles into the lysosome/vacuole lumen for degradation. During macroautophagy cargo is packaged in autophagosomes that fuse with the lysosome/vacuole. During microautophagy cargo is directly engulfed by the lysosome/vacuole membrane. Piecemeal microautophagy of the nucleus (PMN) occurs in Saccharomyces cerevisiae at nucleus-vacuole (NV) junctions and results in the pinching-off and release into the vacuole of nonessential portions of the nucleus. Previous studies concluded macroautophagy ATG genes are not absolutely required for PMN. Here we report using two biochemical assays that PMN is efficiently inhibited in atg mutant cells: PMN blebs are produced, but vesicles are rarely released into the vacuole lumen. Electron microscopy of arrested PMN structures in atg7, atg8, and atg9 mutant cells suggests that NV-junction-associated micronuclei may normally be released from the nucleus before their complete enclosure by the vacuole membrane. In this regard PMN is similar to the microautophagy of peroxisomes (micropexophagy), where the side of the peroxisome opposite the engulfing vacuole is capped by a structure called the "micropexophagy-specific membrane apparatus" (MIPA). The MIPA contains Atg proteins and facilitates terminal enclosure and fusion steps. PMN does not require the complete vacuole homotypic fusion genes. We conclude that a spectrum of ATG genes is required for the terminal vacuole enclosure and fusion stages of PMN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.