Wireless technology is envisioned to be a major enabler of flexible industrial deployments, allowing agile installations and mobility of production elements. However, for industrial IoT (IIoT) usecases, reliability and service availability remain as key concerns for wide adoption. To enhance wireless link reliability, we propose in this paper a Selective Duplication with QoS (SDQoS) technique, a cross-layer scheduling solution which leverages radio access technology metrics and transport layer metrics to schedule data transmission across one or more links. The framework is implemented as part of a multi-access gateway solution and its capability is demonstrated in a realistic two-hall industrial production environment for a multi-data flow autonomous mobile robot use-case, using Wi-Fi. The proposed QoS-aware solution shows a major improvement in preserving low latency and reliability for critical control data in the presence of large background traffic as compared to state-of-the-art solutions.
Data-driven agriculture and Internet of Farming (IoF) require reliable communication systems. Nowadays, only some of the key use cases demanded by the agricultural industry verticals get support from multiple state of the art wireless technologies such as 4G, Wi-Fi, or Low Power Wide Area Network (LPWAN) technologies, combined with satellite and cloud access. However, the ones demanding very high data rates or very low latency are still not feasible. With 5G, designed for flexible support of Extreme Mobile Broadband (xMBB), Massive Machine-Type Communications (mMTC) and Ultra-reliable Machine-Type Communications (uMTC), more agricultural use cases will be possible. This paper provides a reference list of data-driven agriculture scenarios and use cases with their associated communication requirements, and whose feasibility is evaluated in a live 5G trial performed in a representative rural area scenario in the south of Denmark. The paper details a reference methodology for assessing 5G Quality of Service (QoS), including multi-connectivity schemes and reports the empirical 5G performance results, which are put in perspective of the requirements for the different IoF reference scenarios. The empirical results indicate that early 5G deployments are already capable of reliably serving data-driven agriculture vertical use cases such as those related to agricultural logistics or configuration of machinery and diagnostics in 65.8-99% of the cases; but it will be necessary to wait for 5G network upgrades and coming 5G Releases in order to operate the more low latency demanding use cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.