Unwanted redox shuttles can lead to self-discharge and inefficiency in lithium-ion cells. This study investigates the generation of a redox shuttle in LFP/graphite and NMC811/graphite pouch cells with common alkyl carbonate electrolyte. Visual inspection of the electrolyte extracted after formation at temperatures between 25 and 70°C reveals strong discoloration. Such extracted electrolytes with intense red and brown color show relatively large shuttling currents in Al/Li coin cells. Two weight percent of vinylene carbonate is effective at preventing the redox shuttle generation as indicated by the absence of electrolyte discoloration and shuttling current. Ultra-high precision coulometry demonstrates that the presence of the shuttle molecule during cycling of LFP/graphite and NMC811/graphite pouch cells leads to significant charge endpoint capacity slippage and coulombic inefficiency. A brief constant voltage hold at 4.2 V can eliminate the shuttle molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.