A new method for arsenic detection by optical emission spectrometry (OES) is presented. Arsine (AsH) is generated from liquid solutions by means of hydride generation (HG) and introduced into a capillary dielectric barrier discharge (DBD) where it is atomized and excited. A great challenge in OES is the reduction of the recorded background signal, because it negatively affects the limit of detection (LOD). In conventional DBD/OES methods, the signal intensity of the line of interest, in this case arsenic, is integrated over a long time scale. However, due to the pulsed character of the plasma, the plasma on-time is only a small fraction of the integration time. Therefore, a high amount of noise is added to the actual signal in each discharge cycle. To circumvent this, in the present study the emitted light from the DBD is collected by a fast gated iCCD camera, which is mounted on a modified monochromator. The experimental arrangement enables the recording of the emission signal of arsenic in the form of a monochromatic 2D-resolved picture. The temporal resolution of the iCCD camera in the nanosecond range provides the information at which point in time and how long arsenic is excited in the discharge. With use of this knowledge, it is possible to integrate only the arsenic emission by temporally isolating the signal from the background. With the presented method, the LOD for arsenic could be determined to 93 pg mL with a calibration curve linear over 4 orders of magnitude. As a consequence, the developed experimental approach has a potential for both mechanistic studies of arsine atomization and excitation in DBD plasmas as well as routine applications, in which arsenic determination at ultratrace levels is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.