Several technologies have aimed to recover nitrogen directly from urine. Nitrogen recovery in these technologies was limited by the mismatch of the nitrogen-phosphorus molar ratio (N:P) of urine, being 30–46:1, and that of the final product, e.g., 1:1 in struvite and 16–22:1 in microalgae biomass. Additionally, the high nitrogen concentrations found in urine can be inhibitive for growth of microorganisms. Cyanobacteria were expected to overcome phosphorus (P) limitation in urine given their ability to store an N-rich polymer called cyanophycin. In this study, it was found that the model cyanobacterium Synechocystis sp. PCC6803 did not experience significant growth inhibition when cultivated in synthetic medium with concentrations of 0.5 g ammonium-N L−1. In the case of urea, no inhibition was observed when having it as sole nitrogen source, but it resulted in chlorosis of the cultures when the process reached stationary phase. Synechocystis was successfully cultivated in a medium with 0.5 g ammonium-N L−1 and a N:P ratio of 276:1, showing the N:P flexibility of this biomass, reaching biomass N:P ratios up to 92:1. Phosphorus starvation resulted in cyanophycin accumulation up to 4%. Dilution of the culture in fresh medium with the addition of 118 mg N L−1 and 1.5 mg P L−1 (N:P of 174:1) resulted in a rapid and transient cyanophycin accumulation up to 11%, after which cyanophycin levels rapidly decreased to 3%.
Thiocyanate is a toxic compound produced by the mining and metallurgy industries that needs to be remediated prior to its release into the environment. If the industry is situated at high altitudes or near the poles, economic factors require a low temperature treatment process. Microbial fuel cells are a developing technology that have the benefits of both removing such toxic compounds while recovering electrical energy. In this study, simultaneous thiocyanate degradation and electrical current generation was demonstrated and it was suggested that extracellular electron transfer to the anode occurred. Investigation of the microbial community by 16S rRNA metatranscriptome reads supported that the anode attached and planktonic anolyte consortia were dominated by a Thiobacillus-like population. Metatranscriptomic sequencing also suggested thiocyanate degradation primarily occurred via the ‘cyanate’ degradation pathway. The generated sulfide was metabolized via sulfite and ultimately to sulfate mediated by reverse dissimilatory sulfite reductase, APS reductase, and sulfate adenylyltransferase and the released electrons were potentially transferred to the anode via soluble electron shuttles. Finally, the ammonium from thiocyanate degradation was assimilated to glutamate as nitrogen source and carbon dioxide was fixed as carbon source. This study is one of the first to demonstrate a low temperature inorganic sulfur utilizing microbial fuel cell and the first to provide evidence for pathways of thiocyanate degradation coupled to electron transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.