We develop two novel models of the H2+ molecule and its isotopes from which we assess quantum mechanically and semi-classically whether the molecule anti-aligns with the field in the first excited state.
The problem of controlling the quantum state of a system is investigated using a time varying potential. As a concrete example we study the problem of a particle in a box with a periodically oscillating infinite square-well potential, from which we obtain results that can be applied to systems with periodically oscillating boundary conditions. We derive an analytic expression for the frequencies of resonance between states, and against standard intuition, we show how to use this behavior to control the quantum state of the system at will. In particular, we offer as an example the transition from the ground state to the first excited state of the square well potential. At first sight, it may be counter intuitive that we can control the state of such a quantum Hamiltonian, as the Schrödinger equation conserves the norm of the wave function. In this manuscript, we show how that can be achieved.
We develop a framework of "semi-automatic differentiation" that combines existing gradient-based methods of quantum optimal control with automatic differentiation. The approach allows to optimize practically any computable functional and is implemented in two open source Julia packages, GRAPE.jl and Krotov.jl, part of the QuantumControl.jl framework. Our method is based on formally rewriting the optimization functional in terms of propagated states, overlaps with target states, or quantum gates. An analytical application of the chain rule then allows to separate the time propagation and the evaluation of the functional when calculating the gradient. The former can be evaluated with great efficiency via a modified GRAPE scheme. The latter is evaluated with automatic differentiation, but with a profoundly reduced complexity compared to the time propagation. Thus, our approach eliminates the prohibitive memory and runtime overhead normally associated with automatic differentiation and facilitates further advancement in quantum control by enabling the direct optimization of non-analytic functionals for quantum information and quantum metrology, especially in open quantum systems. We illustrate and benchmark the use of semi-automatic differentiation for the optimization of perfectly entangling quantum gates on superconducting qubits coupled via a shared transmission line. This includes the first direct optimization of the non-analytic gate concurrence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.