Glycolysis and the pentose phosphate pathway (PPP) were modulated in porcine cumulus-oocyte complexes during IVM by the addition of inhibitors and stimulators of key enzymes of the pathways to analyze their influence on the oxidative status, active mitochondria, and maturation of the oocyte. The influence of pharmacologic and physiological inhibitors of glycolysis (Sodium fluoride and ATP) and PPP (6-Aminonicotinamide and nicotinamide adenine dinucleotide phosphate) was validated by assessing glucose and lactate turnover and brilliant cresyl blue staining in oocytes. Inhibitors of glycolysis and PPP activity significantly perturbed nuclear maturation, oxidative metabolism (Redox Sensor Red CC-1), and active mitochondria (Mitotracker Green FM) within oocytes (P < 0.05). In comparison, physiological stimulators of glycolysis (adenosine monophosphate) and PPP (nicotinamide adenine dinucleotide phosphate) did not affect any of evaluated parameter. In the absence of modulators, fluctuations in the oocyte oxidative activity and active mitochondria were observed during porcine IVM. The inhibition of glycolysis and PPP modified the pattern of oxidation and mitochondrial fluctuation, resulting in impaired meiotic progression. We demonstrated the relationship between carbohydrate metabolism in COC and oocyte redox status necessary for porcine oocyte IVM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.