The external thermal insulation composite system (ETICS) improves the energy efficiency of buildings, and nowadays, this method is the most popular to insulate buildings in many European Union (EU) countries. The article presents the impact of producing ETICS with expanded polystyrene (EPS) or mineral wool (MW) on the natural environment using the life cycle assessment (LCA) method. The data used in the calculations, related to 2017 real production, were obtained from the externally verified inventory from five manufacturing plants located in different regions of Poland. The LCA of the examined products covered modules from A1 to A3 (cradle-to-gate), according to EN 15804 standard. The study determines and analyses the values of basic indicators related to environmental impacts and environmental aspects of resource use. It comprises indicators calculated for 1 m2 ETICS for five thicknesses of the mentioned thermal insulation materials. Results show that for all environmental indicators, MW systems are characterized by a more negative environmental impact than the equivalent systems with EPS. The study aims to highlight knowledge about ETICS sustainability. The data presented in work are essential for assessment in terms of the sustainable development of ETICS. Such an evaluation is not just a need for the future but a necessity for the present.
External thermal insulation systems (ETICS) are relevant facade applications of functional components allowing to reduce energy consumption in buildings to fulfill the provisions of nearly Zero-Energy Buildings (nZEBs). ETICS systems generally are made of adhesives, thermal insulation material, renders with mesh reinforcement, primers, and finish coats. Their main parameters are thermal characteristics and durability, both determined by the specific composition of the systems. Growing concerns on the environment and depletion of natural resources drive the need for the determination of the environmental characteristic of ETICS due to its growing market demand. This analysis focuses on a life cycle assessment (LCA) of a commonly used EPS based ETICS system with four different renderings, produced in several locations. The scope of this study concerns raw materials extraction, transport, production, and energy provision up to the finished, packed, and ready-for-sale product at the factory gate. The authors compared the environmental impact allocated to the 1 m 2 of the produced system by taking into account the thickness of EPS and within different environmental impact categories. The results of the current impacts were compared to those obtained five years earlier, considering the technological and environmental progress of the production process.
Energy saving is one of the strategic challenges facing our civilization today. Without decisive actions to reduce energy consumption, it is impossible to maintain the current standard of living. Energy consumption for heating and cooling purposes is one of the primary energy consumption sources in many countries. The external thermal insulation composite system (ETICS), which is today the most widely used solution in EU countries, increases buildings’ energy efficiency. This article investigates the impact of producing cementitious adhesives, as part of ETICS with expanded polystyrene (EPS) or mineral wool (MW), on the natural environment using the cradle-to-gate life cycle assessment (LCA) method. Cementitious adhesives have a relatively low impact on most of the environmental indicators analyzed in the paper concerning other ETICS components. The paper aims to raise awareness of the importance of the environmental impact related to the production of cementitious adhesives. Knowledge of the construction products’ environmental impact is fundamental for creating reliable databases, based on which, in the future, their environmental requirements will be determined. The environmental performance of building elements is essential for the correct determination of the buildings’ sustainability.
The production of construction products is associated with energy and raw materials consumption, including those of natural origin. Their use is associated with the generation of significant quantity of waste and the emission of greenhouse gases. Therefore, for the sustainable development of civilization, it is essential to reduce the environmental impact of construction products. Gypsum is one of the primary mineral binders, commonly used in construction. The study compares the effect on the environment of building gypsum made of natural raw materials and gypsum obtained in the flue gas desulfurization process. Nine environmental impact indicators were analyzed: global warming potential – GWP, stratospheric ozone layer depletion potential – ODP, soil and water acidification potential – AP, eutrophication potential – EP, tropospheric ozone formation potential – POCP, abiotic depletion potential for non-fossil resources – ADP-elements and fossil resources-ADP-fossil fuels, total use of renewable primary energy resources – PERT and total use of non-renewable primary energy resources – PENRT. Higher values of all considered indicators were obtained for building gypsum made of raw material from flue gas desulfurization processes. The environmental impact assessment was carried out using the Life Cycle Assessment [LCA] method and actual production data from 2017. The life cycle analyzed in this paper covered modules from A1 to A3, i.e., from the extraction/acquisition of raw materials to the finished product, delivered to the factory gate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.