Whole-genome sequencing (WGS) is a fundamental technology for research to advance precision medicine, but the limited availability of portable and user-friendly workflows for WGS analyses poses a major challenge for many research groups and hampers scientific progress. Here we present Sarek, an open-source workflow to detect germline variants and somatic mutations based on sequencing data from WGS, whole-exome sequencing (WES), or gene panels. Sarek features (i) easy installation, (ii) robust portability across different computer environments, (iii) comprehensive documentation, (iv) transparent and easy-to-read code, and (v) extensive quality metrics reporting. Sarek is implemented in the Nextflow workflow language and supports both Docker and Singularity containers as well as Conda environments, making it ideal for easy deployment on any POSIX-compatible computers and cloud compute environments. Sarek follows the GATK best-practice recommendations for read alignment and pre-processing, and includes a wide range of software for the identification and annotation of germline and somatic single-nucleotide variants, insertion and deletion variants, structural variants, tumour sample purity, and variations in ploidy and copy number. Sarek offers easy, efficient, and reproducible WGS analyses, and can readily be used both as a production workflow at sequencing facilities and as a powerful stand-alone tool for individual research groups. The Sarek source code, documentation and installation instructions are freely available at https://github.com/nf-core/sarek and at https://nf-co.re/sarek/.
BACKGROUNDHuman papillomavirus positive (HPV+) tonsillar cancer (TSCC), base of tongue cancer (BOTSCC) and unknown primary cancer of the head and neck (HNCUP) have better outcome than corresponding HPV− cancers. To find predictive markers for response to treatment, and correlations and differences in mutated oncogenes and suppressor genes between HPV+ TSCC/BOTSSCC and HPV+ HNCUP and HPV− TSCC/BOTSCC targeted next-generation sequencing was performed of frequently mutated regions in 50 cancer related genes.PATIENTS AND METHODSDNA from 348 TSCC/BOTSCC and 20 HNCUP from patients diagnosed 2000-2011, was sequenced by the Ion Proton sequencing platform using the Ion AmpliSeq Cancer Hotspot Panel v2 to identify frequently mutated regions in 50 cancer related genes. Ion Torrent Variant Caller software was used to call variants.RESULTS279 HPV+ TSCC/BOTSCC, 46 HPV− TSCC/BOTSCC and 19 HPV+ HNCUP samples qualified for further analysis. Mutations/tumor were fewer in HPV+ TSCC/BOTSCC and HNCUP, compared to HPV− tumors (0.92 vs. 1.32 vs. 1.68). Differences in mutation frequency of TP53 and PIK3CA were found between HPV+ TSCC/BOTSCC and HNCUP and HPV− TSCC/BOTSCC. In HPV+ TSCC/BOTSCC presence of FGFR3 mutations correlated to worse prognosis. Other correlations to survival within the groups were not disclosed.CONCLUSIONSIn HPV+ TSCC/BOTSCC mutation of PIK3CA was most frequently observed, while TP53 mutations dominated in HPV− TSCC/BOTSCC. In HPV+ TSCC/BOTSCC and HNCUP, mutations/tumor were similar in frequency and fewer compared to that in HPV− TSCC/BOTSCC. Notably, FGFR3 mutations in HPV+ TSCC/BOTSCC indicated worse prognosis.
Whole-genome sequencing of tumor tissue has the potential to provide comprehensive characterization of genomic alterations in tumor samples. We present Patchwork, a new bioinformatic tool for allele-specific copy number analysis using whole-genome sequencing data. Patchwork can be used to determine the copy number of homologous sequences throughout the genome, even in aneuploid samples with moderate sequence coverage and tumor cell content. No prior knowledge of average ploidy or tumor cell content is required. Patchwork is freely available as an R package, installable via R-Forge (http://patchwork.r-forge.r-project.org/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.