The idea of atoms defying ionization in ultrastrong laser fields has fascinated physicists for the last three decades. In contrast to extensive theoretical work on atoms stabilized in strong fields only few experiments limited to intermediate intensities have been performed. In this work we show exceptional stability of Rydberg atoms in strong laser fields extending the range of observation to much higher intensities. Corresponding field amplitudes of more than 1 GV/cm exceed the thresholds for static field ionization by more than 6 orders of magnitude. Most importantly, however, is our finding that a surviving atom is tagged with a measure of the laser intensity it has interacted with. Reading out this information removes uncertainty about whether the surviving atom has really seen the high intensity. The experimental results allow for an extension of the investigations on the stabilization and interaction of a quasifree electron with a strong field into the relativistic regime.
Using field ionization combined with the direct detection of excited neutral atoms we measured the distribution of principal quantum number n of excited He Rydberg states after strong-field excitation at laser intensities well in the tunneling regime. Our results confirm theoretical predictions from semiclassical and quantum mechanical calculations and simultaneously underpin the validity of the semiclassical frustrated tunneling ionization model. Moreover, since our experimental detection scheme is spin sensitive in the case of He atoms, we show that strong-field excitation leads to strong population of triplet states. The origin of it lies in the fact that high angular momentum states are accessible in strong-field excitation. Thus, singlet-triplet transitions become possible due to the increased importance of spin-orbit interaction rather than due to direct laser induced spin-flip processes.
The seminal strong-field tunnelling theory introduced by L V Keldysh plays a pivotal role. It has shaped our understanding of atomic strong-field processes, where it represents the first step in complex ionisation dynamics and provides reliable tunnelling rates. Tunnelling rates, however, cannot be necessarily equated with ionisation rates. Taking into account the electron dynamics in the Coulomb potential following the tunnelling process, the process of frustrated tunnelling ionisation has been found to lead to excited Rydberg atoms. Here, we excite He atoms in the strong-field tunnelling regime into Rydberg states. A high percentage of these Rydberg atoms survive in high intensity laser fields. We exploit this fact together with their high polarisability to kinematically manipulate the Rydberg atoms with a second elliptically polarised focused strong laser field. By varying the spatial overlap of the two laser foci, we are able to selectively control the deflection of the Rydberg atoms. The results of semi-classical calculations, which are based on the frustrated tunnelling model and on the ponderomotive acceleration, are in accord with our experimental data.
Laser induced strong-field phenomena in atoms and molecules on the femtosecond (fs) time scale have been almost exclusively investigated with traveling wave fields. In almost all cases, approximation of the strong electromagnetic field by an electric field purely oscillating in time suffices to describe experimental observations. Spatially dependent electromagnetic fields, as they occur in a standing light wave, allow for strong energy and momentum transfer and are expected to extend strong-field dynamics profoundly. Here we report a strong-field version of the Kapitza-Dirac effect for neutral atoms where we scatter neutral He atoms in an intense short pulse standing light wave with fs duration and intensities well in the strong-field tunneling regime. We observe substantial longitudinal momentum transfer concomitant with an unprecedented atomic photon scattering rate greater than 10(16)s(-1).
Hollow core fibers were introduced many years ago but are now starting to be used regularly in more demanding applications. While first experiments mainly focused on the characterization and analysis of the fibers themselves, they are now implemented as a tool in the laser beam delivery. Owing to their different designs and implementations, different tasks can be achieved, such as flexible beam delivery, wide spectral broadening up to supercontinuum generation or intense gas-laser interaction over long distances. To achieve a constant result in these applications under varying conditions, many parameters of these fibers have to be controlled precisely during fabrication and implementation. A wide variety of hollow core fiber designs have been analyzed and implemented into a high-power industrial beam delivery and their performance has been measured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.